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Executive Summary
The  DEEP-HybridDataCloud  (Designing  and  Enabling  E-Infrastructures  for  intensive  data
Processing in a Hybrid DataCloud) is a project approved in July 2017 within the EINFRA-21-2017
call  of  the  Horizon  2020  framework  program  of  the  European  Community.  It  will  develop
innovative  services  to  support  intensive  computing  techniques  that  require  specialized  HPC
hardware, such as GPUs or low-latency interconnects, to explore very large datasets.

Although the cloud model  offers flexibility  and scalability,  it  is  quite  complex for  a  scientific
researcher that develops a new application to use and exploit  the required services at  different
layers.  Within the project, WP6 is going to realize the DEEP as a Service solution composed of a
set building blocks (i.e. the DEEP Open Catalogue) that enable the easy development of compute-
intensive applications. By using this solution users will get easy access to cutting-edge computing
libraries (such as deep learning and other compute-intensive techniques) adapted to leverage high-
end accelerators (GPUs), integrated with BigData analytics frameworks existing in other initiatives
and e-Infrastructures (like the EOSC or EGI.eu). The DEEP as a Service solution will therefore
lower the access barrier for scientists, fostering the adoption of advanced computing techniques,
large-scale analysis and post-processing of existing data.

This deliverable provides the state-of-the-art in Deep Learning (DL), Neural Network (NN) and
Machine Learning (ML) frameworks and libraries to be used as building blocks in the DEEP Open
Catalogue. It also  presents a comprehensive knowledge background about ML and DL for large-
scale data mining. The deliverable states clearly the recent time-slide of ML/DL research as well as
the current high dynamic development of cutting-edge DL/NN/ML software. By combining one or
more of the building blocks,  users will  be able to describe their  application requirements.  The
DEEP Open Catalogue will be oriented to cover divergent needs and requirements of worldwide
researchers and data scientists supported by specialised hardware and the recent current-edge work
on compute- and data-intensive libraries and frameworks in the era of large-scale data processing
and data mining. 

The initial establishment towards scientific data analytic and ML/DL tools will be built based on
the outcome of this document and the initial requirements from DEEP research community coming
from WP2 (Deliverable D2.1). The content of the DEEP Open Catalogue will be extendable and
modifiable according to user community demands.
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1. Introduction
Nowadays, the full CRISP-DM (Cross-Industry Standard Process for Data Mining) cycle is applied
in real life data mining (DM) applications with machine learning (ML) techniques. The realization
of DM in many life areas, as described also in the CRISP-DM cycle, leads to the need of various
tools for statistics,  data  analytics,  data  processing,  data  mining, modelling and evaluation.  The
CRISP-DM was involved in the EU FP4-ESPRIT 4, ID 24959 project [CRIPS-DM 1999], which is
in-part funded by the European Commission. It is now the leading and a de facto standard for DM
applications.

Fig. 1 CRISP-DM Cross-Industry Standard Process for Data Mining

The CRISP-DM consists of six steps: business understanding, data understanding, data preparation,
modelling, evaluation and deployment (Fig. 1). 

• The business understanding is usually realised based on the provided quest formulations
and data descriptions. 

• The data understanding is usually realised based on provided data and their documentations.
• The data preparation consists of data transformation, exploratory data analysis and feature

engineering, each of them are furthermore divided into smaller sub-steps. 
• In the modelling phase,  various ML algorithms can be applied with different parameter

calibrations. The combination between data and parameter variability can lead to extensive
repeating the model  train-test-evaluation cycle.  If  the  data  is  large-scale,  the modelling
phase can have time-consuming and computation-intensive requirements. 
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• The evaluation phase can be performed under various criterions for thorough testing ML
models and to choose the best model for the deployment phase. 

• The deployment phase is also called the production phase; it involves the use of the selected
ML model as well as the creation of data pipeline in production. 

The whole CRISP-DM cycle is repetitive. The group of the first five phases are also called the
development and it can be repeated with different settings according to evaluation results. Here
there is the need to highlight the fact that ML algorithms learn from data. Therefore, in practice,
data understanding and data preparation phases can consume a large portion of the entire time of
every DM project using ML techniques.

Recently,  almost  all  disciplines  and  research  areas,  including  computer  science,  business,  and
medicine, are deeply involved in this spreading computational culture of Big Data because of its
broad reach of influence and potential within multiple disciplines. The change in data collection
has led to changes in data processing. The Big Data definition is characterised by many Vs, such as
Volume,  Velocity  and Variety,  as  well  as  Veracity,  Variability,  Visualisation,  Value  and so  on.
Consequently,  the  methods  and  procedures  to  process  these  large-scale  data  must  have  the
capability to handle, e.g., high volume and real-time data. Furthermore, data analysis is expected to
change in this new era. The feature of large-scale data requires new approaches and new tools that
can accommodate them with different data structures, different spatial and temporal scales [Liu
2016]. The surge of large volumes of information, especially with the Variety characteristic in the
Big Data era, to be processed by DM and ML algorithms demand new transformative parallel and
distributed computing solutions capable to scale computation effectively and efficiently. Graphic
processing  units  (GPUs)  have  become  widespread  tools  for  speeding  up  general  purpose
computation in the last decade [Cano 2017]. They offer a massive parallelism to extend algorithms
to large-scale data for a fraction of the cost of a traditional high-performance CPU cluster.

The content of the document is organised as follows. Part 1 gives an introduction to data mining for
large-scale data. Part 2 presents a comprehensive overview, the evolution and the emerging trend in
ML and DL. It also briefly describes the connection between DL and accelerated computing. The
main part of the document is Part 3, which provides the state-of-the-art in in DL, NN and ML
frameworks and libraries. This part is divided into three subparts: general frameworks and libraries,
DL with  GPU support,  and ML/DL integrated  with MapReduce.  Finally,  Part  4  concludes  the
document.
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2. Machine Learning and Deep Learning at a glance
Data Mining (DM) is the core stage of the knowledge discovery process that is aim to extract
interesting and potentially useful information from data [Goodfellow 2016] [Mierswa 2017]. As the
DM techniques and businesses evolved, there is a need for data analysts to better understand and
standardise  the  knowledge  discovery  process.  DM  can  serve  as  a  foundation  for  Artificial
Intelligence and Machine Learning.  The term "data mining",  as described in this  document,  is
meanly oriented to large-scale data mining. However, many techniques that work for large-scale
datasets can work also for small data.

Fig. 2 Relationship between Artificial Intelligence, Machine Learning, Neural Networks and Deep
Learning

Artificial Intelligence (AI) is any technique that enables computers to mimic human behaviour,
including machine learning, Natural Language Processing (NLP),  language synthesis,  computer
vision, robotics, sensor analysis, optimization and simulation, and many more.

Machine Learning (ML) is a subset of AI techniques that enables computer systems to learn from
previous experience and improve their behaviour. ML techniques include Support Vector Machines
(SVM), decision trees, Bayes learning, k-means clustering, association rule learning, regression,
neural networks, and many more.

Neural Networks (NNs) or Artificial Neural Networks (ANNs) are a subset of ML techniques,
which are loosely inspired by biological neural networks included Deep Learning. They are usually
described as a collection of connected units, called artificial neurons and organised in layers.
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Deep Learning (DL) is a subset of NNs that makes the computational multi-layer NN feasible.
Typical  DL  architectures  are  deep  neural  networks  (DNNs),  convolutional  neural  networks
(CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), deep belief
networks (DBNs), and many more.

The  relations  among  Artificial  Intelligence,  Machine  Learning,  Neural  Networks  and  Deep
Learning are depicted in Fig. 2. 

2.1. Machine Learning approach
When facing the huge number of different ML algorithms, the most frequent question is: “Which
algorithm  is  the  right  solution  for  the  given  problem?”.  The  answer  to  this  question  varies
depending on many factors, including 1) the size, quality, and nature of the domain data; 2) the
available computational time; 3) the urgency of the task and 4) what is the aim of the quest.

In  many  cases,  no  one  can  tell  which  algorithm will  perform the  best  before  trying  different
algorithms after thoughtful data examination. The use of a concrete algorithm is usually chosen
based on data  characteristics  and exploratory data  analysis.  As in  general  with DM using ML
approach, the performance of data models is strongly dependent on the representativeness of the
provided data  set.  The complementarity  of methods leads to try different  options from a wide
spectrum of available modelling methods based on data characteristics and analysis. In order to
reach the maximum performance, in many cases, it is necessary to train each model multiple times
with different parameters and options (so-called model ensembling). Sometimes, it is also suitable
to combine several independent  models of different types,  because each type can be strong in
fitting different cases. The full potential of the data can be tapped by a cooperation of partial weak
models e.g. using ensemble learning methods based on principles such as voting, record weighting,
multiple training process or random selection. Hence, a proper combination of several types of
models with different advantages and disadvantages can be used to reach the maximum accuracy
and stability in predictions.

The simplest  customary way is  to categorize ML algorithms into supervised,  unsupervised and
semi-supervised learning [Goodfellow 2016] as follows.

• Supervised learning algorithms are learning algorithms that infer a function from some
inputs with some outputs using supervised training data that consist of a set of training
examples. Each example is a pair  of an input and a (desired) output value. In many cases,
the output  may be difficult  to  collect  automatically  and must  be provided by a  human
supervisor  (i.e.  labeling).  The  inferred  function  is  called  a  classifier  (if  the  output  is
discrete) or a regression function (if the output is continuous).

• Unsupervised learning  attempts to extract information from a training data that is only
based on a set of inputs (i.e. without labeling). This category is usually associated with
density estimation, learning to draw samples from a distribution, learning to denoise data
from some distribution, finding a manifold that the data lies near, or clustering the data into
groups  of  related  examples.  The  distinction  between  supervised  and  unsupervised
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algorithms  is  not  formally  and  rigidly  defined  because  there  is  no  objective  test  for
distinguishing whether a value is a feature or a target provided by a supervisor. 

• Semi-supervised learning tries to make use of unlabeled data for training e.g. typically
from  small  amount  of  labeled  data  within  a  large  amount  of  unlabeled  data.  These
algorithms are halfway between supervised and unsupervised learning. The reason is the
expensive cost associated with the labeling process, e.g. by human expert interventions or
physical  examinations  that  causes  fully  labeled  training  set  infeasible.  Semi-supervised
learning is interesting from ML theoretical side as a model of human learning.

It is interesting to notice that ML algorithms have no strict categorization, e.g. some method can be
listed  in  one  or  more  categories.  For  example,  NNs  can  be  trained  for  some  problems  in  a
supervised manner while in other problems in an unsupervised manner. Although the problem of
algorithm categorization is interesting, it is out of the scope of this document.

Pre-processing and post-processing algorithms can also be categorized into a number of sub-
categories  such  as  dimensionality  reduction,  sampling  (subsampling,  oversampling),  linear
methods, statistical testing, feature engineering with feature extraction, feature encoding, feature
transformation and feature selection (e.g. mutual information, chi-square X2 statistics). Many more
algorithms  can  be  listed  here  for  overfitting  prevention  (e.g.  regularization,  threshold  setting,
pruning,  dropout),  model  selection and performance optimization  (e.g.  hyper-parameter  tuning,
grid search, local minimum search, bio-inspired optimization) and model evaluation (e.g. cross-
validation,  k-fold, holdout)  with various metrics such as accuracy (ACC), precision,  recall,  F1,
Matthews correlation coefficient (MCC), receiver operating characteristic (ROC), area under the
curve (ROC AUC), mean absolute error (MAE), mean squared error (MSE), and root-mean-square
error (RMSE).

Fig. 3 provides a comprehensive graphical overview of ML methods for modelling as well as for
pre-processing and post-processing. However, this overview is the subject to change as the number
of ML algorithms is increasing continually. 
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Fig. 3 Overview of Machine Learning algorithms



2.2. From Neural Networks to Deep Learning
As previously described, NNs are a subset of ML techniques. These networks are not intended to
be realistic models of the brain, but rather robust algorithms and data structures able to model
difficult  problems.  NNs  have  units  (neurons)  organized  in  layers,  with  basically  three  layer
categories: input layers, hidden (middle) layers and output layers. NNs can be divided into shallow
(one hidden layer) and deep (several hidden layers) networks. The predictive capability of NNs
comes from this hierarchical multilayered structure. Through proper training, the network can learn
how to optimally represent inputs as features at different scales or resolutions and combine them
into higher-order feature representations. It can then learn to relate these representations to output
variables and therefore learn to predict. In fact, mathematically, NNs are capable of learning any
mapping function (known as the universal approximation theorem [Cybenko 1989]).

2.2.1. Deep Neural Networks and Deep Learning architectures
Deep neural networks (DNNs) are considered to be capable of learning high-level features with
more complexity and abstraction than shallower NNs due to their larger number of hidden layers.
Defining a network architecture and training routine are two dependent problems that have to be
focused in a problem solving with NNs in order to achieve high predictive accuracy [Goodfellow
2016] [Lisa 2015] [Schmidhuber 2015]. Defining network architectures involves setting certain
fine-grained details like activation functions (e.g. hyperbolic tangent, rectified linear unit (ReLU),
maxout) and the types of layers (e.g. fully connected, dropout, batch normalization, convolutional,
pooling) as well as the overall architecture of the network. Defining routines for training involves
into setting learning rate schedules (e.g. stepwise, exponential), the learning rules (e.g. stochastic
gradient descent (SGD), SGD with momentum, root mean square propagation (RMSprop), Adam),
the  loss  functions  (e.g.  MSE,  categorical  cross  entropy),  regularization  techniques  (e.g.  L1/L2
weights decay, early stopping) and hyper-parameter optimization (e.g. grid search, random search,
bayesian guided search). Some common DL architectures are:

• Feed Forward Neural Network (FFNN), also known as (deep) neural network (DNN) or
multi-layer perceptron (MLP), is the most common type of NNs. FFNNs work well  on
tabular  (i.e.  transactional)  data,  which  is  the  main  data  type  in  financial  and insurance
companies [H2O.ai 2017].

• Convolutional  Neural  Network (CNN or  ConvNet)  is  traditionally  a  good choice  for
image  data  [Lazebnik  2017].  The  most  simple  architecture  consists  on  a  stack  on
convolutional and pooling layers with a fully connected layer at the end.

• Recurrent Neural Network (RNN) is a kind of folded NN. RNNs are distinguished from
FFNNs the fact information can also flow backwards through feedback loops. One of the
most popular blocks for building layers of RNNs are Long Short Term Memory (LSTM)
units, which are composed of a cell, an input gate, an output gate and a forget gate. Some
also popular blocks like Gated Recurrent Units (GRU) are improvements over the LSTM
block. RNNs can deal well with context-sensitive, sequential or time-series data.
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• Boltzmann  Machine is  a  kind  of  generative  models  with  stochastic  approach
[Salakhutdinov 2009]. It is a network of symmetrically coupled stochastic binary units and
its name is due to the use of Boltzmann distribution in statistics. Boltzmann Machine is a
counterpart of Hopfield nets. Restricted Boltzmann Machine (RBM) interprets the NN as
not a feedforward one, but a bipartite graph where the idea is to learn joint probability
distribution of  hidden and input  variables.  A RBM has  no connections  between hidden
units. Deep Boltzmann Machine (DBM) comprises undirected Markov random fields with
many densely connected layers of latent variables. DBMs have the potential of learning
internal representations that become increasingly complex.

• Deep Belief Network (DBN) is  a kind of directed sigmoid belief  networks with many
densely connected layers of latent variables. Belief network is probabilistic directed acyclic
graphical model, which represents a set of variables and their conditional dependencies via
a directed acyclic graph.

• Autoencoder is  a  kind  of  network  useful  for  learning  feature  representations  in  an
unsupervised manner. An autoencoder first compresses (encodes) the input vector to fit in a
smaller representation, and then tries to reconstruct (decode) the input back.

More about DL architectures is available in [Veen 2016].
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Year Model Number of
layers

Top 5 error at
ILSVRC (%)

Description

1990 LeNet 4 - LeNet is one of the first commercial successful CNN applications [LeCun 1998]. It was
deployed in ATMs to recognize digits for check deposits. The most well known version is
the LeNet-5 (Fig. 4).

2012 AlexNet 8 16.4 AlexNet is the first CNN to win the ILSVRC and used GPUs to train the network.

2013 ZF Net 8 11.7 ZF Net won ILSVRC 2013 [Zeiler 2014]. The architecture is very similar to AlexNet with
minor modifications in the architecture hyperparameters.

2014 VGG Net 19 7.3 VGG Net,  which has  has  the VGG-16 and VGG-19 versions,  classified  second in the
ILSVRC 2014 [Simonyan 2015]. The interesting of the architecture is the number of filters
doubles after each maxpool layer. This reinforces the idea of shrinking spatial dimensions,
but growing depth.

2015 GoogLeNet
(Inception)

22 6.7 GoogLeNet (also referred to as the Inception) won the ILSVRC 2014 [Szegedy 2015]. It
introduced  an  inception  module  composed  of  parallel  connections  witch  drastically
reduced the number of parameters. From this point, CNN architecture became more than
only sequential stacks. Today, GoogleLeNet has 4 versions with deeper architecture (at
least 42 layers) and many improvements. 

2015 ResNet 152 3.57 ResNet (also known as Residual Net) won ILSVRC 2015 [He 2016] [He 2016b], being the
first network to surpass human-level accuracy with a top-5 error rate below 5%. It uses
residual connections i.e. shortcut module or bypass to go even deeper. ResNets have been
used  as  a  starting  point  to  further  develop  new  architectures,  like  Wide  ResNets
[Zagoruyko 2016] or DenseNets [Huang 2017].

2016 SqueezeNet 14 14.0 SqueezeNet focuses in heavily reducing model size using deep compression [Iandola 2016]
without  losing  accuracy.  The  result  is  a  network  with  roughly  the  same classification
accuracy as  AlexNet  but  with  510 times  less  in  the  memory requirement  (0.5  MB of
memory tested on the ILSVRC 2012 dataset). 

Table 1 Deep Learning timeline through the most well-known models



2.2.2. Deep Learning timeline through the most well-known models
Although NNs were proposed in  the 1940s and DNNs in 1960s,  the first  practical  application
employing multiple digital neurons appeared in 1990 with the LeNet network for handwritten digit
recognition.  The  Deep  Learning  (DL)  successes  of  the  2010s  are  believed  to  be  under  the
confluence of three main factors:

1. the new algorithmic advances that have improved application accuracy significantly and
broadened applicable domains;

2. the availability of huge amount of data to train NNs;
3. the availability of enough computing capacity.

Many DNN models have been developed over the past two decades [Deshpande 2017] [Kalray
2017] [Sze 2017] . Each of these models has a different network architecture in terms of number of
layers, layer types, layer shapes and connections between layers. In Table 1 we present a timeline
of some iconic computer vision models over the past years. Some of them will be presented along
with their  performance in  a  well-known computer  vision  challenge,  the  ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [Russakovsky 2015].

Fig. 4 The LeNet-5 model [LeCun 1998]

2.2.3. Problems in Deep Learning and advanced algorithmic solutions
As  mentioned  above,  one  factor  that  influences  current  DL success  is  the  new  algorithmic
advances,  which have alleviated some problems that  prevented NN applications from properly
working. Those problems are:

• The vanishing gradient problem describes the fact that the gradient signal barely reaches
the first layers after being propagated from the final layers, causing very slow learning in
very deep networks. This problem can be alleviated by using several components:
◦ Rectified linear units (ReLU) as activation funtions to improve gradient backward flow

(in contrast with sigmoid and hyperbolic-tangent functions).
◦ Shortcut connections to connect distant part of the networks through identity mappings.
◦ Batch  normalization  layers to  improve  the  internal  covariance  shift  problem [Ioffe

2015].  These  methods  have  enabled  to  train  networks  as  deep  as  1000  layers  [He
2016b].
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• The overfitting problem describes the fact that network perform very well on the training
set but fail to generalize test data. This can be fought by using:

◦ Weight decay (e.g. L1, L2), which penalizes layers weights that become too high. 
◦ Dropout layers that block a random number of units in a layer (usually around 50%)

each  training  cycle  [Srivastava  2014].  The  random blocking  provides  incentive  for
kernels  to  learn  more  robust  filters.  At  inference,  all  connections  are  used  with
corrective constant that is equal to the percentage of blocked connections.

◦ Network  pruning which  represents  a  way  to  combat  overfitting  by  discarding
unimportant connections [Han 2016]. The advantage of this method is that the number
of  parameters  is  significantly  reduced  leading  to  smaller  memory  and  energy
requirements. 

• The model size problem  describes the fact that modern high performing models can be
highly computationally and memory intensive.  DNNs can have millions or even billions of
parameters  due  to  their  rich  connectivity.  This  increases  the  computational,  memory
bandwidth, and storage demands. To minimize these demands one can use:

◦ Deep  compression significantly  reduces  the  network  parameters  with  the  aim  of
reducing memory requirements so the whole deep network model can fit into the on-
chip memory.  The process starts with network pruning when the importance of each
connection is learnt. It is followed by quantizing the network and weight sharing and
finally Huffman coding is applied [Han 2015]. 

◦ Sparse computation that imposes the use of sparse representations along the network
allow memory and computation benefits.

◦ Low precision data types [Konsor 2012],  smaller than 32-bits (e.g.  half-precision or
integer) with experimentation even with 1-bit  computation [Courbariaux 2016]. This
speeds up algebra calculation as well as greatly decreasing memory consumption at the
cost of a slightly less accurate model. In these recent years, most DNNs are starting to
support 16-bit and 8-bit computation.

2.3. Accelerated computing and Deep Learning
In addition to the above-mentioned algorithmic advances, the other two factors responsible of the
DL successes are the availability of huge amounts of data and computing power. DL needs to use
specialised hardware with low-latency interconnects in accelerated computing i.e. massive parallel
architecture, extension of the Single Instruction Multiple Data (SIMD) paradigm with large scale
multi-threading, streaming memory and dynamic scheduling. Better hardware would allow to scale
training beyond current data and allow to create bigger and more accurate models.

The current mainstream solution [NVidiaAC] has been to use Graphics Processing Unit (GPU) as
general purpose processors (GPGPU). GPUs provide a massive parallelism for large-scale DM
problems, allowing scaling vertically algorithms to data volumes not computable by traditional
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approaches  [Cano  2017].  GPUs  are  effective  solutions  for  real-world  and  real-time  systems
requiring very fast decision and learning, such as DL, especially image processing.

Beside that, the use of  Field Programmable Gate Array (FPGA) [Lacey 2016] and the recently
announced Google TPU2 (Tensor Processing Unit Second-Generation) for inference and training
also  constitute  an  interesting  alternative  [TPU2 2017].  Other  IT companies  also  start  to  offer
dedicated hardware for DL acceleration e.g. Kalray with their second generation of DL acceleration
device MPAA2-256 Bostan, oriented to mobile devices such as autonomous cars [Kalray 2017].

Vertical scalability for large-scale data mining is still limited due to the GPU memory capacity,
which is up to 16GB on the NVidia Pascal architecture at the moment. Multi-GPU and distributed-
GPU  solutions  are  used  to  combine  hardware  resources  to  scale-out  to  bigger  data  (data
parallelism) or bigger models  (model  parallelism).  Integration of MapReduce frameworks with
GPU computing may overcome many of the performance limitations and it is open challenges and
future research [Cano 2017].

2.3.1. Accelerated libraries
The main feature of the many-core accelerators such as GPU is their massively parallel architecture
allowing them to speed up computations that involve matrix-based operations, which is a heart of
many ML/DL implementations.  Manufacturers  often  offer  the  possibility  to  enhance  hardware
configuration  with  many-core  accelerators  to  improve  machine/cluster  performance  as  well  as
accelerated libraries, which provide highly optimized primitives, algorithms and functions to access
the massively parallel power of GPUs (Table 2). 

Library Description

CUDA The NVIDIA CUDA (Compute Unified Device Architecture) [Cuda] is a parallel
computing platform and programming model developed by NVIDIA for general
computing  on  GPUs.  GPU-accelerated  CUDA  libraries  enable  drop-in
acceleration  across  multiple  domains  such as  linear  algebra,  image and video
processing, DL and graph analytics. The NVIDIA CUDA Toolkit [CudaToolkit]
provides  a  development  environment  for  creating  high  performance  GPU-
accelerated applications. 

cuDNN The NVIDIA CUDA Deep Neural Network library (cuDNN)  [cuDNN], which
is a GPU-accelerated library of DNN's primitives. The cuDNN provides highly
tuned  implementations  for  standard  routines  such  as  forward  and  backward
convolution, pooling, normalization, and activation layers. It allows DL users to
focus on training NNs and developing software applications rather than spending
time on low-level GPU performance tuning. The cuDNN is used by many DL
frameworks e.g. Caffe2, MatLab, CNTK, TensorFlow, Theano, and PyTorch.

OpenCL OpenCL (Open  Computing  Language)  developed  by  Khronos  provides
compatibility across heterogeneous hardware from any vendor [OpenCL].

Intel MKL Intel  MKL (Intel  Math Kernel  Library)  [MLK] optimizes  code with minimal
effort  for  future  generations  of  Intel  processors.  It  is  compatible  with  many
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Library Description

compilers,  languages,  operating  systems,  and linking and threading models.  It
accelerates  math  processing  routines,  increase  application  performance,  and
reduce development time. This ready-to-use math library includes: linear algebra,
Fast Fourier Transforms (FFT), Deep Neural Networks (DNN), vector statistics
and data fitting, vector math and miscellaneous solvers.

Table 2 Accelerated libraries from the biggest worldwide manufactures

Other parallel programming libraries, which support computational speed-up, are:

• OpenMP:  application  programming  interface  (API)  that  supports  multi-platform shared
memory  multiprocessing  programming  [OpenMP].  It  consists  of  a  set  of  compiler
directives, library routines, and environment variables that influence run-time behaviour. 

• Open MPI: open source, freely available implementation of the MPI specifications [Open
MPI].  The  Open  MPI  software  achieves  high  performance  and  it  is  quite  receptive  to
community  input.  MPI  stands  for  the  Message  Passing  Interface  -  a  standardised  API
typically used for parallel and/or distributed computing. It is written by the MPI Forum,
which is a large committee comprising of a cross-section between industry and research
representatives.

An application built with the hybrid model of parallel programming can run on a computer cluster
using both OpenMP and MPI, such that OpenMP is used for parallelism within a (multi-core) node
while MPI is used for parallelism between nodes. More details about accelerators and accelerated
computing will be available in Deliverable D4.1 Available Technologies for accelerators and HPC.

In the recent years the accelerators have been successfully used in many areas e.g. text, image,
sound processing and recognition, life simulations as ML/NN/DL applications. Applicable areas of
DNNs are:

• Image and video processing:  satellites images (such as fires,  droughts,  crops diseases,
urban development), space (telescope images), biology image recognition (such as plant,
cells, bacteria), medical image recognition (such as magnetic resonance imaging, computer
tomography,  roentgen  images,  sonography),  automatic  picture  or  audio  annotations
[Hafiane 2017];

• Speech  and  language:  text  processing  and  recognition,  speech  recognition,  machine
translation, natural language processing;

• Security:  biometrics  authentication  (such  as  people,  faces,  gait),  anomaly  detection,
intrusion detection;

• Business intelligence: insurance, financial markets, stock and exchange rate predictions;
• Robotics and videogames: autonomous navigation (such as car, drone, plane, submarine),

videogames (such as Atari, Dota, Starcraft).
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2.3.2. Digital ecosystems and the embedding trend
Digital ecosystems consist of hardware, software, and services that create dependencies leading to
user loyalty [Bajarin 2011]. In the context of DM using ML techniques in the Big Data era, the
following ecosystems (Table 3) are frequently mentioned:

Ecosystem Description

Python ecosystem is built around Python programming language, which
provides full  features under the philosophy that the same libraries and
code can be used for model development as well as in production. Python
also has a complete scientific computing stack and a professional grade
ML library for general purpose use.

Java ecosystems is built around Java programming language, which has
strong weight in business software development.

Hadoop/Spark  ecosystem is  an  ecosystem  of  Apache  open  source
projects  and  a  wide  range  of  commercial  tools  and  solutions  that
fundamentally  change  the  way  of  Big  Data  storage,  processing  and
analysis.

Cloud ecosystem is a complex system of interdependent components that
work together to enable cloud services. In a hybrid cloud environment, an
organization  combines  services  and  data  from a  variety  of  models  to
create a unified, automated, and well-managed computing environment.
Cloud ecosystems provide virtualisation solution e.g. docker i.e. installing
all the DL frameworks takes time, so download a docker image is faster
with the same running environment on different machines.

Table 3 Digital ecosystems

Furthermore, there are virtual environments at various levels e.g. in Python ecosystem as well as in
Cloud ecosystems. The trend is to build an isolated environment for each prototyping stack in order
to avoid interfering with other system configurations.

3. State-of-the-art of Machine Learning frameworks 
and libraries
The number of ML algorithms, as well as their different software implementation, is extensively
high. Many software tools for DM using ML techniques have been in development for the past 25
years [Jovic 2014]. Their common goal is to facilitate the complicated data analysis process and to
propose integrated environments on top of standard programming languages. Beside that, tools are
designed for various  purposes: as analytic  platform, predictive systems, recommender systems,
processors (from image, sound or language). A number of them are oriented to large-scale data, fast
processing or  streaming.  Other  ones  are  specialized  for  NNs and DL. There  is  no single  tool
suitable for every problem and often a combination of them is needed to solve it. Fig. 5 provides a
comprehensive overview of ML frameworks and libraries.
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Fig. 5 Overview of Machine Learning frameworks and libraries

In following sections, the most well-known tools are described and evaluated briefly with their
basic properties such as implementation language, license, coverage of ML methods as well as
supports for recent advanced DM topics i.e. the current demand of processing large-scale data.
Most of the modern DM tools have dataflow architectures (pipeline or workflow). Some of them
have graphical integrated environments (GUI), others prefer an API approach or both. The software
development  in  ML/DL  direction  is  highly  dynamic  with  various  abstraction  layers  of
implementations as depicted in Fig. 6. 
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Fig. 6 Machine Learning and Deep Learning frameworks and libraries layering based on
abstraction implementation levels

The details of these tools are presented in the part 3.2 (DL frameworks and libraries with GPU
support)  and the  part  3.3 (ML/DL frameworks and libraries  integrated  with  MapReduce).  The
following part 3.1 is concentrated into the state-of-the-art of ML/NN frameworks and libraries,
which do not require special  hardware or infrastructure supports.  Nevertheless,  these tools can
utilise multi-CPU power to deal with large-scale data. 

A short  overview  of  Sections  3.1,  3.2  and  3.3  is  provided  in  Table  4,  Table  5  and  Table  6
respectively. These tables summarise the frameworks and libraries capabilities so users can choose
appropriate  products  for  tackling  their  problems.  Each  tool  is  also  described  and  evaluated
separately afterwards in more detail.

3.1. General Machine Learning frameworks and libraries
The application of ML to diverse areas of computing is gaining popularity rapidly, because of the
increasing availability of free and open source software enabling ML algorithms to be implemented
easily. There is a wide range of open source ML frameworks, which enable to build, implement and
maintain impactful research and development in many life areas.
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Tool Type Creator Licence Platform Written in Interface Algorithm
coverage

Workflow Usage Popularity

Shogun ML library G. Rätsc,
S. Sonnenburg

GNU GPLv3 UNIX
Windows
Mac OS

C++ Python,  Octave,  R,
Java,  Scala,  Lua,  C#,
Ruby

High API Academic Low

RapidMiner ML/NN/DL
framework

R. Klinkenber,
I. Mierswa, 
S. Fischer

Proprietary UNIX
Windows

Java Python, R, GUI, API High Yes Academic
Industrial

High

Weka ML/NN
Framework

GNU GPLv3 Windows
UNIX
Mac OS

Java, GUI Java, GUI, API High Yes Academic High

Scikit-Learn ML/NN
Framework

D. Cournapeau BSD UNIX
Windows
Mac OS

Python
C++

Python, API High Yes
API 

Academic High

LibSVM SVM library
Classification

C.C. Chang, 
C.J. Lin

BSD 3-clause UNIX
Windows
Mac OS 
GPU

C/C++ Java, Matlab, Octave, 
R, Python, C#, Perl, 
Ruby, Node.js, 
JavaScript, Lisp, 
CLisp, Haskell, PHP, 
Android

Low No Academic Medium

LibLinear ML library
Classification

R.E.Fan, 
K.W. Chang, 
C.J. Hsieh, 
X.R. Wang, 
C.J. Lin

BSD 3-clause UNIX
Windows 
Mac OS

C/C++ Matlab, Octave, Java, 
Python, Ruby, Perl, R, 
Labview, Common 
Lisp, Scilab, CLI

Low 

Linear
SVM,
Linear
Regression

No Academic Medium

Vowpal Wabbit ML library
Fast 

J. Langford BSD 3-clause UNIX
Windows

C++
own MPI 

API Low No Academic
Industrial

Medium



Tool Type Creator Licence Platform Written in Interface Algorithm
coverage

Workflow Usage Popularity

out-of-core
incremental

Mac OS
Hadoop
HPC 

library for 
Hadoop 
AllReduce

XGBoost ML library
boosting
ensemble 

T. Chen Apache 2.0 UNIX
Windows
Mac OS
Hadoop

C++ C++, Java, Python, R, 
Julia

Low API Academic
Industrial

Medium

Table 4 Machine Learning and Neural Networks frameworks and libraries without special supports



3.1.1. Shogun
Shogun is the oldest open-source general purpose ML library that offers a wide range
of efficient and unified ML methods [Shogun] [ShogunGoogle] [Sonnenburg 2010]
built on an architecture written in C++. It is licensed under the terms of the GNU
GPLv3 license. The library SVM contains 15 implementations in combination with

more than 35 kernel implementations,  which can be furthermore combined/constructed by sub-
kernel weighting. Shogun also covers wide range of regression and classification methods as well
as a number of linear  methods,  algorithms to train Hidden Markov Models (HMM), statistical
testing, clustering, distance counting, FFNNs and model evaluations and many more. It has been
under active development since 1999, with involving maintenance (the current version is 6.1.3,
12.2017). Original authors are Gunnar Rätsc from Max Planck Society for the Advancement of
Science,  and  Sören  Sonnenburg  from  Berlin  Institute  of  Technology.  Currently,  Shogun  is
developed by a diverse team of volunteers and it is fiscally sponsored project of NumFOCUS since
2017. The main idea behind Shogun is that the underlying algorithms are transparent and accessible
and anyone should be able to use for free. It was successfully used in speech and handwriting
recognition, medical diagnosis, bioinformatics, computer vision, object recognition, stock market
analysis, network security, intrusion detection, and many other. Shogun can be used transparently
in many languages and environments as Python, Octave,  R, Java/Scala,  Lua,  C#, and Ruby. It
offers  bindings  to  other  sophisticated  libraries  including,  LibSVM/LibLinear,  SVMLight,
LibOCAS,  libqp,  Vowpal  Wabbit,  Tapkee,  SLEP,  GPML and  with  future  plans  of  interfacing
TensorFlow and Stan. 

Strong points

• Breath-oriented ML/DM toolbox with a lot of standard and cutting-edge ML algorithms.

• Open-source, cross-platform, API-oriented, the oldest and still maintained library with core
implementation in C++.

• Bindings to many other ML libraries, programming interface in many languages.

Weak points

• The most of the code has been written by researchers for their studies for a long time and
therefore its code is not easily maintainable or extendable.

• Lack of documentation and examples.

• For academic use only.

3.1.2. RapidMiner
RapidMiner is a general purpose data science software platform for data preparation,
ML, DL, text mining, and predictive analytics [Mierswa 2003] [Rapid]. Its architecture
is based on a client/server model with server offered as either on-premise, or in public
or private  cloud infrastructures  (Amazon AWS, and Microsoft  Azure).  RapidMiner

(formerly  YALE, Yet  Another  Learning Environment)  was developed starting  in  2001 by Ralf
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Klinkenberg, Ingo Mierswa, and Simon Fischer at the Artificial Intelligence Unit of the Technical
University  of  Dortmund.  It  is  developed  on  an  open  core  model.  It  is  written  in  the  Java
programming language and is a cross-platform framework. RapidMiner supports interactive mode
(GUI), command-line interface (CLI) and Java API. RapidMiner is mainly proprietary commercial
product since version 6.0. However it offers a free edition limited to one logical processor and
10,000 data rows, which is available under the AGPL license.

For large-scale data analytics, RapidMiner supports unsupervised learning in Hadoop [Radoop],
supervised learning in memory with scoring on the cluster (SparkRM), and supervised learning and
scoring with native algorithms on the cluster. In this case, the algorithm coverage is narrowed into
Naive Bayes, iterative Naive Bayes, linear regression, logistic regression, SVM, decision tree, and
random forest and clustering using k-means and fuzzy k-means.

Strong points

• General  purpose,  wide set  of algorithms with learning schemes,  models and algorithms
from Weka and R scripts.

• Add-ons supports with selected algorithms for large-scale data.

• Strong community, well support, cross-platform framework.

Weak points

• Proprietary product for large problem solutions.

3.1.3. Weka3
Weka collects a general purpose and very popular wide set of ML algorithms
implemented in Java and engineered specifically for DM [Weka] . It is a product
of the University of Waikato, New Zealand and is released under GNU GPLv3-
licensed for non-commercial purposes. Weka has a package system to extend its

functionality, with both official and unofficial packages available, which increases the number of
implemented DM methods. It offers four options for DM: command-line interface (CLI), Explorer,
Experimenter, and Knowledge flow. While Weka isn’t aimed specifically at Hadoop users and Big
Data processing, it can be used with Hadoop thanks to a set of wrappers produced for the most
recent  versions  of  Weka3.  At  the  moment,  it  still  does  not  support  Apache  Spark,  but  only
MapReduce. Clojure [Clojure] users can also leverage Weka, thanks to the Clj-ml library [Clj-ml].
Related to Weka, Massive Online Analysis (MOA) is also a popular open source framework written
in Java for data stream mining, while scaling to more demanding larger-scale problems.

Strong points

• General purpose, well-maintained, involving wide set of algorithms with learning schemes,
models and algorithms.

• It comes with GUI and API-oriented.
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• Supports  standard  DM  tasks,  including  feature  selection,  clustering,  classification,
regression and visualization.

• Very popular ML tool in the academic community.

Weak points

• Limited for Big Data, text mining, and semi-supervised learning.

• Weak for sequence modelling e.g. time-series.

3.1.4. Scikit-Learn
Scikit-Learn is widely known as a well-maintained, open source and popular Python
ML  tool,  which  contains  comprehensive  algorithm  library  included  incremental
learning [Scikit].  It  extends  the  functionality  of  NumPy and SciPy packages  with
numerous DM algorithms. It also uses the Matplotlib package for plotting charts. The

Scikit-Learn project started as a Google Summer of Code project by David Cournapeau. Since
2015, it is under active development sponsored by INRIA, Telecom ParisTech and occasionally
Google through the Google Summer of Code. Since April 2016, Scikit-Learn is provided in jointly-
developed  Anaconda  [Anaconda]  for  Cloudera  project  on  Hadoop  clusters  [AnaCloudera].  In
addition  to  Scikit-Learn,  Anaconda  includes  a  number  of  popular  packages  for  mathematics,
science, and engineering for the Python ecosystem such as NumPy, SciPy and Pandas. Scikit-Learn
provides  access  to  the  following  sorts  of  functionality:  classification,  regression,  clustering,
dimensionality reduction, model selection and preprocessing.

Strong points

• General purpose, open source, commercially usable, well-maintained and popular Python
ML tools.

• Support from big IT companies (Google) and institutions (INRIA).

• Well-updated and comprehensive set of algorithms and implementations.

• It is a part of many ecosystems; it is closely coupled with statistic and scientific Python
packages.

Weak points

• Small datasets, API-oriented only, command-line interface requires Python programming
skills.

• The library does not support GPU and has only basic tools for neural networks.

3.1.5. LibSVM
LibSVM is a specialized library for Support Vector Machines (SVM).
Its development started in 2000 by Chih-Chung Chang and Chih-Jen
Lin  at  National  Taiwan  University  [Chang  2011]  [LibSVM].  It  is
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written  in  C/C++  but  has  also  Java  source  code.  The  learning  tasks  are  1)  support  vector
classification (binary and multi-class), 2) support vector regression, and 3) distribution estimation.
Supported  problem  formulation  are:  C-Support  Vector  Classification,  ν-Support  Vector
Classification,  distribution  estimation  (one-class  SVM),  ɛ-Support  Vector  Regression,  and  ν-
Support Vector Regression. All of the formulations are quadratic minimization problems and are
solved  by  sequential  minimal  optimization  algorithm.  The  running  time  of  minimizing  SVM
quadratic problems is reduced by shrinking and caching. LibSVM provides some special setting for
unbalanced data by using different penalty parameters in the SVM problem formulation. It was
successfully used in computer vision, NLP, neuro-imaging, and bioinformatics (since 2000 to 2010
with 250 000 downloads). It is also included in some DM environments: RapidMiner, PCP, and
LIONsolver. The SVM learning code from the library is often reused in other open source ML
toolkits, including GATE [Gate], KNIME [Knime], Orange [Orange] and scikit-learn. The library is
very popular at open source ML community (released under the 3-clause BSD license). LibSVM
version 3.22 released on December, 2016.

Strong points

• The LibSVM data format is a specific data format for the data analysis tool LibSVM, which
is well-accepted in other  frameworks and libraries.  The format  is  dense and suitable to
describe and process Big Data especially because it allows for a sparse representation.

• Open source, well-maintained and specialised tool with high popularity in open source ML
community.

Weak points

• LibSVM training algorithm does not scale up well for very large datasets in comparison
with LibLinear or Vowpal Wabbit [Zygmunt 2014]. It takes O(n³) time in the worst case and
around O(n²) on typical cases.

• Limited to problems, with which SVM deals well.

3.1.6. LibLinear
LibLinear  is  a  library  designed  for  solving  large-scale  linear
classification problems. It was developed starting in 2007 by Rong-
En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang and Chih-

Jen Lin at National Taiwan University [Fan 2008] [LibLinear]. The library is written in C/C++. The
supported ML task are logistic regression and linear SVM. The supported problem formulation are:
s L2-regularized logistic regression, L2-loss and L1-loss linear SVMs. The approach for L1-SVM
and L2-SVM is a coordinate descent method. For LR and also L2-SVM, LibLinear implements a
trust region Newton method. For multi-class problems, LibLinear implements the one-vs-the-rest
strategy and Crammer and Singer method. The SVM learning code from the library is often reused
in other open source ML toolkits, including GATE, KNIME, Orange and scikit-learn. The library is
very popular in the open source ML community (it is released under the 3-clause BSD license).
LibLinear version 2.20 was released on December, 2017.
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Strong points

• Designed to solve large-scale linear classification problems.

• Open source, well-maintained and specialized tool with high popularity in open source ML
community.

Weak points

• Limited to logistic regression and linear SVM.

3.1.7. Vowpal Wabbit
Vowpal Wabbit (or VW) is efficient scalable implementation of online ML and
for support of various incremental ML methods [VW] [VWAzure]. It is is an
open-source  fast  out-of-core  learning  system  originally  developed  by  John

Langford at Yahoo! Research, and currently being developed at Microsoft Research. VW is one of
the  offered  ML options  in  Microsoft  Azure.  It  is  notable  for  its  many features  including e.g.,
reduction  functions,  importance  weighting,  selection  of  different  loss  functions,  optimization
algorithms. VW has been used to learn a tera-feature (1012) data-set on 1000 nodes in one hour,
and can run properly in single machine, Hadoop and HPC cluster.

Strong points

• Open source, efficient, scalable and fast out-of-core online learning supported by strong IT
companies (Microsoft, previously Yahoo).

• Feature identities are converted to a weight index via a hash using 32-bit MurmurHash3
(the hashing trick).

• Exploiting multi-core CPUs on Hadoop cluster by own MPI-AllReduce library, parsing of
input and learning are done in separate threads.

• Allows using non-linear features e.g. n-grams.

• Product of the strong industrial laboratory, compiled C++ code, well-maintained (github),
well-supported.

Weak points

• The number of available ML methods is sufficient but limited.

• API-oriented environment only.

3.1.8. XGBoost
XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient, flexible and portable [Chen 2016] [DMLC] [Mitchell 2017] [XGBoost]. It
is an open-source software library that provides the gradient boosting framework

for C++, Java, Python,R, and Julia and works on Linux, Windows, and MAC OS. It also supports
the distributed processing frameworks Apache Hadoop/Spark/Flink and DataFlow and has GPU
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support.  The XGBoost library implements the gradient boosting decision tree algorithm. It  has
gained much popularity and attention recently as it was the algorithm of choice for many winning
teams of a number of ML competitions. XGBoost implements ML algorithms under the Gradient
Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT or GBM)
that solve many data science problems in a fast and accurate way. The same code runs on major
distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
The term “gradient boosting” comes from the idea of boosting or improving a single weak model
by combining it with a number of other weak models in order to generate a collectively strong
model. XGBoost boosts the weak learning models to strong by iteratively learning.

Strong points

• High execution speed and model performance.

• Parallelisation of tree construction using all of CPU cores during trainings.

• Distributed computing for training very large models using a cluster of machines.

• Out-of-core computing for very large datasets that do not fit into memory.

• Cache optimization of data structures and algorithms to make best use of hardware.

Weak points

• It is only a boosting library that works for tabular data. Therefore it will not work for image
recognition, NLP or computer vision.

3.1.9. Interactive data analytics and data visualisation
Tools  in  this  category  display  analytics  results  in  interactive  way,  so  they  can  facilitate  the
understanding of difficult concepts and support decision makers for researchers and data scientists.
There  are  many data  visualization  packages  in  various  levels  in  R or  Python e.g.  Matplotlib,
Plotly, Seaborn, ggplot, Bokeh, and so on. 

In recent years, web-based notebooks/applications have been increasing in popularity. They are
integrated with data analytic environments to create and share documents that contain data-driven
live code, equations, visualisations and narrative text. The most well-known are Jupyter notebook
(formerly iPython notebook) and Zeppelin. 

Jupyter notebook [Jupyter] is the open-source application supporting e.g. creation and
sharing   documents  ("notebooks"),  code,  source   equations,  visualisation  and  text
descriptions for data transformation, numerical simulations, statistical modelling, data
visualisation and ML.

Zeppelin is  an  interactive  notebook  designed  for  the  processing,  analysis  and
visualization of large data sets [Zeppelin], providing native support for Apache Spark
distributed computing. Zeppelin allows to extend their functionality through various
interpreters e.g. Spark, SparkSQL, Scala, Python, shell from Apache Spark analytics.
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The next popular tools belong to open source data analytics, reporting and integration platforms
such as Kibana, Grafana and Tableau.

Kibana is the data visualisation front end for the Elastic Stack, complementing the rest
of the stack that includes Beats, Logstash and Elasticsearch [Kibana]. With the version
5.x release of the Elastic Stack, Kibana now includes Timelion for interactive time series
charts.

Grafana is the chosen DevOps tool for many real time monitoring dashboards of time
series metrics [Grafana]. It has powerful visualisations and supports multiple backend
data sources including InfluxDB, Graphite, Elasticsearch and many others which can be
added via plugins. 

Tableau is a universal analytics tool, which can extract data from different small data
sources like csv, excel, and SQL as well as from enterprise resources or connect Big
Data frameworks and cloud based sources [Tableau].

In conclusion, there are also rich options of interactive tools, which are designed for many different
purposes.

3.1.10. Other tools including data analytic frameworks and libraries
The number of frameworks and libraries coupled with the analytical process using ML/NN/DL
techniques is quite high. A relevant subset of them are described below.

MatLab (matrix laboratory) is a multi-paradigm numerical computing environment. It
uses a proprietary programming language developed by MathWorks [MatLab]. MatLab
is quite popular with over 2 million users across industry and academia. On the other
hand, MatLab is a proprietary product of MathWorks, so users are subject to vendor
lock-in and future development  will  be tied  to  the  MatLab language.  The two most
popular free alternatives to MatLab are GNU Octave [Octave] and SciLab [SciLab].

SAS (Statistical Analysis System) began as a project to analyse agricultural data at North
Carolina State University in 1966 [SAS]. Currently, it is a proprietary software package
written in C for advanced data analytics and business intelligence with more than 200
components. Another similar proprietary software package is SPSS (Statistical Package
for the Social Sciences) [SPSS]. It was developed in 1968 and was acquired by IBM in
2009. An open source alternative of SPSS is GNU PSPP [PSPP].

R is a free software environment for statistical computing and graphics including linear
and  nonlinear  modeling,  classical  statistical  tests,  time-series  analysis,  classification,
clustering. It compiles and runs on a wide variety of UNIX platforms, Windows and
MacOS [Rproject]. R is ease of use and extensible via packages. The Comprehensive R
Archive Network offers more than 10000 packages [R-CRAN].
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Python is a programming language created by Guido van Rossum and first released in
1991  [Python].  Python  is  successfully  used  in  thousands  of  real-world  business
applications  around the  world e.g.  Google  and YouTube.  The primarily  rationale  for
adopting Python for ML is because it is a general purpose programming language for
research,  development  and  production,  at  small  and  large  scales.  Python  features  a
dynamic  type  system  and  automatic  memory  management,  with  a  large  and
comprehensive libraries for scientific computation and data analysis.

NumPy is  the  fundamental  package  for  scientific  computing  with  Python [NumPy].
Besides  its  obvious  scientific  uses,  NumPy  can  also  be  used  as  an  efficient  multi-
dimensional container of generic data. NumPy stack has similar users to MatLab, GNU
Octave, and SciLab.

SciPy is  an  open  source  Python  library  used  for  scientific  computing  and  technical
computing [SciPy]. SciPy builds on the NumPy array object and is part of the NumPy
stack which includes tools like Matplotlib, Pandas, and SymPy.

Pandas is  a  Python  package  providing  fast,  flexible,  and  expressive  data  structures
designed to make it  easier to  work with relational  or labelled data [Pandas].  Its  two
primary  data  structures,  Series  (one-dimensional)  and  DataFrame  (two-dimensional),
handle the vast majority of typical use cases in finance, statistics, social science, and
many areas of engineering.

NLTK is a leading platform for building Python programs to work with human language
data   [NLTK].  It  comes  with  a  suite  of  text  processing  libraries  for  classification,
tokenisation, stemming, tagging, parsing, and semantic reasoning.

3.2. Deep Learning frameworks and libraries with GPU 
support
Many popular ML frameworks and libraries already offer the possibility to use GPU accelerators to
speed up learning process with supported interfaces such as TensorFlow, CNTK, Theano, Keras,
Caffe, Torch, DL4J, MXNet, Chainer and many more [DLwiki] [Felice 2017] [Kalogeiton 2017].
Some of them also allow to use optimised libraries  such as CUDA (cuDNN), and OpenCL to
improve  the  performance  even  further.  The  main  feature  of  the  many-core  accelerators  is  a
massively parallel architecture allowing them to speed up computations that involve matrix-based
operations. The GPGPU interest can be found in many other life large-scale simulation packages
with dynamic progress developments.
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Tool Type Creator Licence Mobile
solution

Accelerated
libraries

Backends Written in Interface Computational
graph

Usage Popularity

TensorFlow Numerical
framework

Apache 2.0 Yes 
(TensorFlo
wLite)

CUDA
OpenMP

C++
Python

Python, C++*,
Java*, Go*

*not fully 
covered

Static with 
small support 
for dynamic 
graph 
(TensorFlow 
Fold)

Scientific
Industrial

Very High
(growing
fast)

Keras Library F. Chollet MIT No as backend TensorFlow
Theano
CNTK
DL4J
MXNet

Python Python Static Scientific
Industrial

High
(growing
very fast)

CNTK Framework
Toolkit

Open source 
Microsoft 
permissive 
license

Limited CUDA
Open MPI
MKL

C++ Python, 
C++,
BrainScript
ONNX

Static Scientific
Industrial

Medium
(growing
fast)

Caffe Framework Y. Jia BSD 2-clause No CUDA C++ C++, 
Python, 
MatLab

Static Scientific
Industrial

High
(growing
fast)

Caffe2 Framework Y. Jia Apache-2.0 Yes CUDA C++ C++, 
Python,
ONNX

Static Mobile
computing

Medium-
Low
(growing
fast)

Torch Framework R. Collobert,
K. Kavukcuoglu,
C. Farabet

BSD No CUDA
OpenMP
OpenCL

C++
Lua

C, C++, 
Lua, 
LuaJIT,
OpenCL

Static Scientific
Industrial

Medium-
Low
(stagnating)

PyTorch Library A. Paszke, 
S. Gross, 
S. Chintala, 
G. Chanan

BSD No CUDA Python
C

Python
ONNX

Dynamic Scientific
Industrial

Medium
(growing
very fast)

MXNet Framework Apache-2.0 No CUDA
OpenMP

C++ C++, Python, 
Julia, Matlab, 
JavaScript, 

Dynamic 
dependency 
scheduler

Scientific
Industrial

Medium
(growing
fast)



Tool Type Creator Licence Mobile
solution

Accelerated
libraries

Backends Written in Interface Computational
graph

Usage Popularity

Go, R, Scala, 
Perl,
ONNX

Theano Numerical
framework

Y. Bengio BSD No CUDA
OpenMP

Python Python Static Scientific
Industrial

Medium-
Low
(stagnating)

Chainer Framework Open source, 
Owner’s 
permissive 
license

No CUDA
MKL-DNN 
opt. for Intel 
architecture

Python Python Dynamic Scientific
Industrial

Low
(stagnating)

Table 5 Deep Learning frameworks and libraries with GPU support

The popularity and trend measures are the subject to change according to the high dynamic development of DL framework and tools. The estimation of
these values was based on Github repository stargazing [Jolav 2018].



3.2.1. TensorFlow
TensorFlow is an open source software library for numerical computation using data
flow graphs  [TensorFlow].  Nodes  in  the  graph  represent  mathematical  operations,
while  the  graph  edges  represent  the  multidimensional  data  arrays  (tensors)
communicated between them. TensorFlow was created and is maintained by Google

Brain team within Google's  Machine Intelligence research organization for  ML and DL.  It  is
currently released under the Apache 2.0 open source license. TensorFlow programming interfaces
includes Python and C++ with plans for Java, GO, R, and Haskell APIs. It is also supported in
Google and Amazon cloud environment. TensorFlow is designed for large-scale distributed training
and  inference.  The  distributed  Tensorflow architecture  contains  distributed  master  and  worker
services  with  kernel  implementations.  These  include  200  standard  operations,  including
mathematical, array manipulation, control flow, and state management operations written in C++.
Unlike other DL libraries that are mainly focused on research (such as Theano) TensorFlow was
designed for use both in research, development and production systems. It can run on single CPU
systems, GPUs, mobile devices and large scale distributed systems of hundreds of nodes.

In addition, TensorFlow Lite is TensorFlow lightweight solution for mobile and embedded devices
[TensorflowLite]. It enables on-device ML inference with low latency and a small binary size but
has coverage for a limited set of operators. It also supports hardware acceleration with the Android
Neural Networks API.

Strong points

• By far the most popular DL tool, open source, fast involving, well-supported by the strong
industrial company (Google).

• Powerful  numerical  library  for  dataflow  programming  that  provides  the  basis  for  DL
research and development.

• Efficiently works with mathematical expressions involving multi-dimensional arrays.

• Very well documented.

• GPU/CPU computing, mobile computing, high scalability of computation across machines
and huge data sets.

• Higher layer of abstraction than Theano.

Weak points

• Still lower level API difficult to use directly for creating DL models.

• Every computational flow must be constructed as a static graph (although the Tensorflow
Fold package tries to alleviate this problem), and lacks symbolic loops.
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3.2.2. Keras
Keras is a minimalist Python library for DL that can run on top of TensorFlow, CNTK,
Theano,  beta  version  with  MXNet  and  announced  Deeplearning4j  [Keras].  It  was
developed with a focus on enabling fast experimentation and is released under the MIT
license. Keras runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and

CPUs given the underlying frameworks. Keras is developed and maintained by Francois Chollet, a
Google engineer using four guiding principles:

1. User friendliness and minimalism. Keras is an API designed for human beings with user
experience front and center. Keras follows best practices for reducing cognitive load by
offering consistent and simple APIs.

2. Modularity.  A  model  is  understood  as  a  sequence  or  a  graph  of  standalone,  fully-
configurable modules that can be plugged together with as little restrictions as possible. In
particular,  neural  layers,  cost  functions,  optimizers,  initialization  schemes,  activation
functions, regularization schemes are all standalone modules to combine and to create new
models.

3. Easy extensibility. New modules are simple to add, and existing modules provide ample
examples allowing to reduce expressiveness.

4. Work with Python. Models are described in Python code, which is compact, easy to debug,
and allows easy extensibility.

Strong points

• Open source, fast involving, well-supported by strong industrial companies.

• Allows to quickly define DL models; Keras may become the standard API for DL, it has
very good documentation.

• Clean  and  convenient  way  to  create  a  range  of  DL models  on  top  of  backends  (e.g.
TensorFlow, Theano, CNTK). Keras wraps backend libraries, abstracting their capabilities
and hiding their complexity.

Weak points

• Modularity  and  simplicity  comes  at  the  price  of  being  less  flexible.  Not  optimal  for
researching new architectures.

• Multi-GPU not 100% working.

• Less projects available online than Caffe.

3.2.3. CNTK
Microsoft Cognitive Toolkit (CNTK) is commercial-grade distributed DL with large-
scale datasets from Microsoft Research [CNTK]. It implements efficient DNNs training
for speech, image, handwriting and text data. Its network is specified as a symbolic
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graph  of  vector  operations,  such  as  matrix  add/multiply  or  convolution  with  building  blocks
(operations). CNTK supports FFNN, CNN, RNN architectures, it is running on both 64-bit Linux
and Windows operating systems using Python, C#, C++ and BrainScript API. CNTK implements
stochastic gradient descent (SGD) learning with automatic differentiation and parallelization across
multiple GPUs and servers.

Strong points

• Open source, fast evolving, well-supported by a strong industrial company (Microsoft).

• Higher performance in comparison with Theano and Tensorflow when running on multiple
machines.

• Supports  the  Open  Neural  Network  Exchange  (ONNX)  format,  which  will  allow  easy
moving  between  CNTK,  Caffe2,  PyTorch,  MXNet  and  other  DL tools.  ONNX  is  co-
developed by Microsoft and Facebook. 

Weak points

• Limited capability on mobile devices.

3.2.4. Caffe
Caffe is a DL framework made with expression, speed, and modularity in mind. It is
developed by Yangqing Jia at the Berkeley Artificial Intelliegence Research (BAIR)
and by community contributors [Caffe]. DNNs are defined in Caffe layer-by-layer.

Layer  is  the  essence  of  a  model  and the  fundamental  unit  of  computation.  Data  enters  Caffe
through data layers. Accepted data sources are efficient databases (LevelDB or LMDB), memory,
file system, Hierarchical Data Format (HDF5) or common image formats (e.g., GIF, TIFF, JPEG,
PNG,  PDF).  Common  and  normalization  layers  provide  various  data  vector  processing  and
normalisation operations. New layers must be written in C++/CUDA, although custom layers are
also supported in Python (but are less efficient).

Strong points

• Suitable for FFNN and excellent implementation of CNN for image processing.

• Fastest DL library on CPU, GPU out-of-the-box training.

• A number  of  pre-trained  networks  directly  from  the  Caffe  Model  Zoo,  available  for
immediate use.

• Easy to code (API/CLI) with Python and MatLab interface.

• Well-acceptable from research community.

Weak points

• It is not good RNN i.e. for text, sound and time-series data.

• Cumbersome for complicated DNN models i.e. GoogleLeNet and ResNet.
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• Custom layers must be written in C++.

3.2.5. Caffe2
Caffe2  is  a  lightweight,  modular,  and  scalable  DL framework  developed  by
Yangqing Jia and his team at Facebook  [Caffe2]. Although it aims to provide an
easy and straightforward way to experiment with DL and leverage community

contributions of new models and algorithms, Caffe2 is used at production level at Facebook while
development is  done in PyTorch. Caffe2 differs from Caffe in several improvement directions,
namely by adding mobile deployment and new hardware support (in addition to CPU and CUDA).
It is headed towards industrial-strength applications with a heavy focus on mobile. The basic unit
of computation in Caffe2 is operator, which is a more flexible version of Caffe’s layer. There are
more than 400 different operators available in Caffe2 and more are expected to be implemented by
the community. Caffe2 provides command line python scripts capable of translating existing Caffe
models into the Caffe2. However, the conversion process needs to perform a manual verification of
the accuracy and loss rates. It is possible to convert Torch models to Caffe2 models via Caffe.

Strong points

• Cross-platform,  focused  also  on  mobile  platform,  edge  device  inference  deployment
framework of choice for Facebook.

• Amazon, Intel, Qualcomm, Nvidia all claim to support Caffe2 due to its robust scalable
character in production.

• Supports  the  Open  Neural  Network  Exchange  (ONNX)  format,  which  will  allow  easy
moving between CNTK, Caffe2, PyTorch, MXNet and other DL tools.

Weak points

• Harder for DL beginners in comparison with PyTorch [Caffe2vsPyTorch].

• Without dynamic graph computation.

• Limited in flexibility.

3.2.6. Torch
Torch is a scientific computing framework with wide support for ML algorithms based
on the Lua programming language [Torch]. It has been under active development since
2002. The original authors are Ronan Collobert, Koray Kavukcuoglu, Clement Farabet
[Collobert 2002]. Torch has been developed using an object-oriented paradigm and

implemented in C++. Nowadays, its API is also written in Lua language (Lua is a multi-paradigm
scripting language created in 1993 by R. Lerusalimschy, L. de Figueiredo, and W. Celes at the
University of Rio de Janeiro). Lua language is used as a wrapper for optimized C/C++ and CUDA
code. Its core is made up by tensor library which provides both CPU and GPU backends. Current
version  Torch7,  Tensor  library  provides  a  lot  of  classic  operations  (including  linear  algebra
operations),  efficiently  implemented in C, leveraging SSE instructions on Intel’s  platforms and
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optionally binding linear algebra operations to existing efficient BLAS/Lapack implementations
(like Intel MKL) [Collobert 2011].  The framework supports parallelism on multi-core CPUs via
OpenMP, and on GPUs via CUDA. It is aimed on large-scale learning (speech, image, and video
applications),  and affords supervised learning,  unsupervised learning, reinforced learning, NNs,
optimization,  graphical  models,  image  processing.  Torch  is  supported  and  used  by  Facebook,
Google,  DeepMind,  Twitter,  and many  other  organizations.  The  framework  is  freely  available
under a BSD license.

Strong points

• Flexibility, readability, mid-level code as well as high level (Lua), easy code reuse.

• Modularity and speed.

• Very convenient for research.

Weak points

• Still smaller proportion of projects than Caffe.

• LuaJIT is not mainstream and does cause integration issues and Lua is not popular although
it is easy to learn.

3.2.7. PyTorch

PyTorch is a Python library for GPU-accelerated DL [PyTorch]. The library is a Python
interface of the same optimized C libraries that Torch uses. It has been developed by
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook's AI research
group) since 2016. PyTorch is written in Python, C, and CUDA. The library integrates

acceleration libraries such as Intel MKL and NVIDIA (CuDNN, NCCL). At the core, it uses CPU
and GPU Tensor and NN backends (TH, THC, THNN, THCUNN) written as independent libraries
on a C99 API. PyTorch supports tensor computation with strong GPU acceleration (it provides
Tensors that can run either on the CPU or the GPU, highly accelerating compute), and DNNs built
on a tape-based autograd system. It has become popular by allowing certain complex architectures
to be built easily [Deeplearning4j, 2018]. Typically, changing the way a network behaves means to
start from scratch. PyTorch uses a technique called reverse-mode auto-differentiation, which allows
to change the way a network behaves with small effort (i.e. dynamic computational graph or DCG).
It is mostly inspired by autograd [autograd], and Chainer [Chainer]. The library was used by both
the scientific and the industrial community. An engineering team at Uber has built Pyro, a universal
probabilistic  programming language  using  PyTorch as  its  back end.  A DL training  site  fast.ai
announced  the  future  switching  to  be  based  on PyTorch rather  than  Keras-TensorFlow [Patel,
2017]. The library is freely available under a BSD license and it is supported by Facebook, Twitter,
NVidia, and many other organizations

Strong points

• Dynamic computational graph (reverse-mode auto-differentiation).

DEEP-Hybrid-DataCloud – 777435 38



• Supports automatic differentiation for NumPy and SciPy.

• Elegant and flexible Python programming for development [Caffe2vsPyTorch].

• Supports  the  Open  Neural  Network  Exchange  (ONNX)  format,  which  will  allow  easy
moving between CNTK, Caffe2, PyTorch, MXNet and other DL tools.

Weak points

• Still without mobile solution in comparison with Caffe2.

3.2.8. MXNet
Apache MXNet  is  a  DL framework designed for  both efficiency and flexibility
[MXNet].  It  allows  mixing symbolic  and  imperative  programming  to  maximize
efficiency and productivity. MXNet is open source library for DL with broad API

language support for R, Python, Julia and other languages [Chen 2015]. It is developed by Pedro
Domingos and a team of researchers at the University of Washington, it is also a part of the DMLC
[DMLC].  At  its  core,  MXNet  contains  a   dynamic  dependency  scheduler  that  automatically
parallelizes both symbolic and imperative operations on-the-fly. A graph optimization layer on top
of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight,
scaling effectively to multiple GPUs and multiple machines. It  is licensed under an Apache-2.0
license.  MXNet  is  supported  by  major  public  cloud  providers.  It  also  supports  an  efficient
deployment of a trained model to low-end devices for inference, such as mobile devices (using
Amalgamation  Amalgamation),  IoT  devices  (using  AWS  Greengrass),  Serverless  (Using  AWS
Lambda) or containers.

Strong points

• Dynamic dependency scheduler (auto parallelism). 

• Very well computational scalability with multiple GPUs and CPUs, which makes it very
useful for the enterprises.

• Supports  a  flexible  programming  model  and  multiple  languages  (C++,  Python,  Julia,
Matlab, JavaScript, Go, R, Scala, Perl, Wolfram Language).

• Supports  the  Open  Neural  Network  Exchange  (ONNX)  format,  which  will  allow  easy
moving between CNTK, Caffe2, PyTorch, MXNet and other DL tools.

Weak points

• APIs are not very user-friendly in some cases. However, it has two user-friendly wrappers
(Keras and Gluon).

• Excellent for parallel production work, but less flexible for DL research.
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3.2.9. Theano
Theano  is  a  pioneering  DL tool  (development  started  in  2007)  supporting  GPU
computation. It is an open source project released under the BSD license [Theano]. It

is actively maintained (although no longer developed) by the LISA group (now MILA Montreal
Institute for Learning Algorithms [MILA]) at the University of Montreal. At its heart, Theano is a
compiler for mathematical expressions in Python to transform structures into very efficient code
using NumPy and efficient native libraries like BLAS and native code to run as fast as possible on
CPUs or GPUs. Theano supports extensions for multi-GPU data parallelism and has a distributed
framework for training models. 

Strong points

• Open source, cross-platform, well-maintained project.

• Powerful numerical library that provides the basis for DL research and development.

• Symbolic API supports looping control, which makes implementing RNNs efficient.

Weak points

• Lower level API, difficult to use directly for creating DL models.

• Lack for mobile platform and other programming API’s.

• The active development at the current level has ended after the 1.0.0 version on November
2017 as announced by Y. Bengio [MILA 2017]. The Theano maintenance would continue
(the current version is 1.0.1 on January 2018).

3.2.10. Chainer
Chainer is a python-based DL framework aiming at flexibility [Chainer] [Tokui 2015].
It  provides  automatic  differentiation APIs  based on the define-by-run approach i.e.
dynamic computational graphs as well as object-oriented high-level APIs to build and
train NNs. The difference from other famous DL framework like Tensorflow or Caffe is

that Chainer constructs NN dynamically. It also supports CUDA/cuDNN using  CuPy (motivation
NumPy + CUDA = CuPy) for high performance training and inference.  Chainer  core team of
developers  work  at  Preferred  Networks,  Inc.  a  ML startup  with  engineers  mainly  from  the
University of Tokyo. Chainer supports CNN, RNN DL architectures. DL frameworks are usually
built  based  on  the  “Define-and-Run”  scheme  i.e.  at  the  beginning  a  computational  graph  is
constructed and a network is statically defined and fixed. Chainer’s design is based on the principle
“Define-by-Run” i.e. network is not predefined at the beginning, but is dynamically defined on-the-
fly  (i.e.  dynamic  computational  graph  or  DCG).  Chainer  contains  libraries  for  industrial
applications e.g. ChainerCV (library for DL in Computer Vision), ChainerRL (deep reinforcement
learning library built  on top of Chainer),  ChainerMN (scalable  multi-node distributed DL with
Chainer where linear speed-up up to 128 GPUs), etc. Intel Chainer with MKL-DNN backend is
aprox. 8.35 times faster than NumPy backend (according to Chainer benchmarks).
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Strong points

• Dynamic computational graph (Define-by-Run).

• Provides libraries for industrial applications.

• Strong investors such as Toyota, FANUC, NTT, etc.

Weak points

• No support for higher order gradients.

• DCG is generated every time also for fixed networks, still no optimization even for static
part of graphs.

3.2.11. Wrapper frameworks and libraries
As mentioned above, Keras is a wrapper library for DL libraries of lower level of implementation
abstractions. There are also more wrapper libraries, some of them are quite popular, other have
unique design.  These  wrapper  libraries  differ  each  from others  in  transparency levels  towards
underlying frameworks or libraries  as well  as  they are chosen based on users  preferences  and
popularity.

Tensorflow  has  a  lot  of  wrappers.  External  wrapper  packages  are  TensorLayer
[TensorLayer],  TFLearn [TFLean] and  Keras. Wrappers from Google are  Sonnet
(Deepmind) [Sonnet] and PrettyTensor [PrettyTensor]. Wrappers are TF-Slim [TF-
Slim], tf.contrib.learn, tf.layers, and tf.keras [TensorFlow].

Gluon is a wrapper for MXNet [Gluon].  Gluon's API specification is an effort  to
improve  speed,  flexibility,  and  accessibility  of  DL technology  for  all  developers,
regardless  of  their  DL framework choice.  Gluon is  a  product  from Amazon Web
Services (AWS) and Microsoft's AI. It is released under Apache 2.0 licence.

NVidia Digits - Deep Learning GPU Training System [DIGITS] is web application
for training DNNs for image classification, segmentation and object detection tasks
using DL backends such as Caffe, Torch and TensorFlow  with a wide variety of
image formats and sources with DIGITS plug-ins. DIGITS simplifies common DL
tasks such as managing data,  designing and training NNs on multi-GPU systems,
monitoring performance in real time with advanced visualisations, and selecting the
best performing model from the results browser for deployment. DIGITS is mainly
interactive  (GUI).  It  provides  availability  of  pre-trained models  such as  AlexNet,
GoogLeNet, LeNet and UNET from the DIGITS Model Store and is released under
BSD 3-clause license. 

Lasagne is lightweight library to build and train NNs in Theano with six principles:
Simplicity,  Transparency,  Modularity,  Pragmatism, Restraint  and Focus [Lasagne].
Other wrappers for Theano are Blocks and Pylearn2. Due to the fact that Theano is
not under active development, the popularity of these wrappers is bound to decrease. 
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3.2.12. Other DL frameworks and libraries with GPU supports
PaddlePaddle (PArallel  Distributed  Deep LEarning)  is  an  open  source,  efficient,  flexible  and
scalable DL platform,  which is  originally  developed by Baidu scientists  and engineers  for  the
purpose of applying DL to many Baidu products [PaddlePaddle]. At Baidu, PaddlePaddle has been
deployed into products and services with a vast number of users, including ad click-through rate
(CTR) prediction,  large-scale  image  classification,  optical  character  recognition  (OCR),  search
ranking,  computer  virus  detection,  recommendation,  etc.  It  supports  a  wide  range  of  NN
architectures and optimization algorithms. It is easy to configure complex models such as neural
machine translation model with attention mechanism or complex memory connection.

MatConvNet is  a  MatLab  toolbox  implementing  CNNs  for  computer  vision  applications
[MatConvNet] developed by the Oxford computer vision team and other research institutions. It is
simple and integrating MatLab GPU support, and can run and learn CNNs with similar results to
top scores in the ImageNet challenge.  Many pre-trained CNNs models  e.g.  VGG, AlexNet for
image classification, segmentation, face recognition, and text detection are available. An important
feature  of  MatConvNet  is  making  available  the  CNN building  blocks  as  easy-to-use  MatLab
commands.  MatConvNet does not support for RBMs and DBNs and it does not have OpenMP and
OpenCL supports. The next weak point of the product is the proprietary character of MatLab. 

The NVIDIA Deep Learning SDK, which is a part of the NVIDIA toolkit,  provides powerful
tools  and  libraries  for  designing  and  deploying  GPU-accelerated  DL applications.  It  includes
libraries for DL primitives, inference, video analytics, linear algebra, sparse matrices, and multi-
GPU communications. The NVIDIA CUDA Deep Neural Network (cuDNN) library is a GPU-
accelerated  library  of  primitives  for  deep  neural  networks,  It  accelerates  widely  used  DL
frameworks,  including Caffe2,  MATLAB, CNTK, TensorFlow, Theano,  PyTorch, etc.  The next
tools in the NVIDIA Deep Learning SDK are Deep Learning Inference Engine (TensorRT), Deep
Learning  for  Video  Analytics  (DeepStream  SDK),  Linear  Algebra  (cuBLAS),  Sparse  Matrix
Operations (cuSPARSE) and Multi-GPU Communication (NCCL).

The development of DL frameworks and libraries is quite high dynamic with many interesting
involving products. The popularity/trend movement of DL frameworks and libraries at the end of
2017 are depicted in Fig. 7 borrowed from https://towardsdatascience.com. It is difficult to make
forecast in this fast changing ecosystem but we can see to main trends emerging in the use of DL
frameworks: 1) a trend backed by Google with uses Keras for fast prototyping and Tensorflow for
production, and 2) a trend backed by Facebook which uses Pytorch for prototyping and Caffe2 for
production.
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Fig. 7 State of open source Deep Learning frameworks at the end of 2017 [Bakker 2017]

The extensive number of deep learning frameworks makes it challenging to develop tools in one
framework and use them in other frameworks (frame interoperability). The Open Neural Network
Exchange  [ONNX]  tries  to  address  this  problem  by  introducing  an  open  ecosystem  for
interchangeable AI models. ONNX is being co-developed by Microsoft, Amazon and Facebook as
an open-source project and it will initially support DL frameworks Caffe2, PyTorch, MXNet and
Microsoft CNTK (Fig. 8). 

Fig. 8 ONNX Open ecosystem for interchangeable AI models
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3.3. Machine Learning and Deep Learning frameworks and 
libraries with MapReduce
Recently, newly distributed frameworks have emerged to address the scalability of algorithms to
Big Data analysis using the MapReduce programming model, being Apache Hadoop and Apache
Spark the two most popular implementations. The main advantages of these distributed systems are
their elasticity, reliability, and transparent scalability in a user-friendly way. They are intended to
provide  users  with  easy  and  automatic  fault-tolerant  workload  distribution  without  the
inconveniences of taking into account the specific details of the underlying hardware architecture
of a cluster. These popular distributed computing frameworks and GPUs are not mutually exclusive
technologies, although they aim at different scaling purposes [Cano 2017]. These technologies can
complement each other and target complementary computing scopes such as ML and DL [Skymind
2017], however here is still a lot of limitations and challenges.
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Tool Type Creator Licence Written in Backends Interfaces Algorithm
coverage

Usage Popularity

DL4J DL library for 
Java

Open source 
Apache 2.0

Java, Scala

CUDA, cuDNN 
support via JNI 

Integration with 
Spark

Java, Scala, 
Clojure, Python

Medium (DL) Industrial Medium

Apache Spark 
MLLib & ML

ML/NN library Open source 
Apache 2.0

Scala Integration with 
Python 
(NumPy), R

Java, Scala, 
Python, R

Medium (ML) Industrial Low

H2O General purpose 
framework for 
ML/DL and Big 
Data analytics

Open source 
Apache 2.0

Java
GUI
API

TensorFlow
MXNet
Caffe

REST API 
JSON+HTTP
Java, Scala , 
Python, R

Medium 
(ML/DL)

Industrial High

KNIME Analytic 
platform

GNU GPLv3 Java
with CUDA 
support

Integration with 
R, Python, Weka,
Keras, H2O, 
DL4J

GUI wrapper as backends Academic
Industrial

Low

Table 6 Machine Learning and Deep Learning frameworks and libraries integrated with MapReduce



3.3.1. Deeplearning4j
Deeplearning4j  or  DL4J is  distinguished from other  ML/DL frameworks and
libraries. It is a modern open-source, distributed, DL library implemented in Java
(JVM)  aimed  to  the  industrial  Java  development  ecosystem  and  Big  Data

processing. DL4J framework comes with built-in GPU support, which is an important feature for
the training process and supports YARN, Hadoop's distributed, application management framework
[DL4J] [Skymind 2017]. The library consists of several sub-projects for developers such as raw
data transformation into feature vectors (DataVec), tools for NN configuration (DeepLearning4j),
3rd party model import (Python and Keras models), native libraries support for quick matrix data
processing on CPU and GPU (ND4J), Scala wrapper running on multi-GPU with Spark (ScalNet),
library of reinforcement learning algorithms (RL4J), tool for searching the hyperparameter space to
find the best NN configuration, and working examples (DL4J-Examples). Deeplearning4j has Java,
Scala and also Python APIs. 

It supports various types and formats of input data easily extendable by other specialized types and
formats. The DataVec toolkit accepts raw data such as images, video, audio, text or time series on
input and enables its ingestion, normalization and transformation into feature vectors. It can also
load data into Spark RDDs. DataVec contains record readers for various common formats. DL4J
includes some of the core NLP tools such as SentenceIterator (for feeding text piece by piece into
natural language processor), Tokenizer (for segmenting the text at the level of single words or n-
grams),  Vocab  (cache  for  storing  metadata).  Specialized  formats  can  be  introduced  by
implementing custom input format similarly as it is in Hadoop via InputFormat. 

Strong points 

• The distinguished advantage of DL4j is it uses the whole power of the Java ecosystem to
perform efficient DL [Varangaonkar 2017]. It can be implemented on top of the popular Big
Data  tools  such  as  Apache Hadoop/Spark/Kafka  with  an  arbitrary  number  of  GPUs or
CPUs. DL4J is the choice for many commercial, industry-focused distributed DL platform,
where the Java ecosystem is predominate in business software development. 

• Rich set of DL architectures CNN, RNN (RNTN, LTSM), RBM and DBN i.e, excellent
capabilities for image recognition, fraud detection and NLP. 

Weak points 

• Java/Scala are not the most popular language in the DL/ML community like Python. 

• Currently, it gains less overall interest than H2O in Big Data and Spark community. 

3.3.2. Apache Spark MLLib and ML
Firstly,  Apache introduced  Mahout built  on the top of MapReduce.  Mahout was
mature and came with many ML algorithms. However, ML algorithms generally use
many iterations making Mahout run very slowly. Apache, then, introduced  Spark

MLLib and  Spark ML built on top of Spark ecosystem on Hadoop, which making them much
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faster than Mahout. Spark MLLib contains old RDD-based API (Resilient Distributed Dataset).
RDD is the Spark basic abstraction of data representing an immutable, partitioned collection of
elements that can be operated on in parallel with a low-level API that offers transformations and
actions. Spark ML contains new API build around DataFrame-based API and ML pipelines and it is
currently the primary ML API for Spark. A DataFrame is a Dataset organised into named columns
and it is conceptually equivalent to a table in a relational database. Transformations and actions
over DataFrame can be specified as SQL queries, which is convenient for developers with SQL
background. Moreover, Spark SQL provides Spark more information about the structure of both the
data and the computation being performed than Spark RDD API. Spark ML brings a concept of ML
pipelines, which help users to create and tune practical ML pipelines; it standardises APIs for ML
algorithms so multiple ML algorithms can be combined into a single pipeline, or workflow. Spark
MLlib is slowly being deprecated in the maintenance mode and most likely will be removed in a
future major release. 

Spark MLLib and Spark ML contain ML algorithms such as classification, regression, clustering or
collaborative  filtering;  featurization  tools  for  feature  extraction,  transformation,  dimensionality
reduction and selection; pipeline tools for constructing, evaluating and tuning ML pipelines; and
persistence utilities for saving and loading algorithms, models and pipelines. They also contain
tools for linear algebra, statistics and data handling. Except the distributed data parallel model,
MLlib can be easily used together with stream data as well. For this purpose, MLlib offers few
basic ML algorithms for stream data such as streaming linear regression or streaming k-means. For
a larger class of ML algorithms, one have to let model to learn offline and then apply the model on
streaming data online. 

Strong points 

• ML tools for large-scale data,  which are already integrated in Apache Spark ecosystem,
convenient to use in development and production. 

• Optimized  selected  algorithm  with  optimized  implementations  for  Hadoop  included
preprocessing methods. 

• Pipeline (workflow) building for Big Data processing included a set of feature engineering
functions for data analytics (classification, regression, clustering, collaborative filtering and
featurization) aslo with stream data. 

• Scalability with SQL support and very fast because of the in-memory processing. 

Weak points 

• Mainly focused to work on tabular data; 

• High memory consumption because of the in-memory processing. 

• Spark MLlib and Spark ML are quite young ML libraries in involving state. They are not
very popular and the number of ML algorithm implementation is not very high. 
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3.3.3. H2O, Sparkling and Deep Water
H2O,  Sparkling  Water   and  Deep  Water  are  developed  by  H2O.ai  (formerly  0xdata)
[H2O]; they are Hadoop compatible frameworks for DL over Big Data as well as for Big
Data predictive analytics.  To access and reference data,  models and objects  across all

nodes and machines, H2O uses distributed key/value store. H2O's algorithms are implemented on
top of distributed Map/Reduce framework and utilize the Java Fork/Join framework for multi-
threading.  H2O can  interact  in  a  stand-alone  fashion with  HDFS stores,  on  top  of  YARN, in
MapReduce, or directly in an Amazon EC2 instance. Hadoop mavens can use Java to interact with
H2O, but the framework also provides REST API via JSON over HTTP and bindings for Python
(H2O-Python), R (H2O-R), and Scala, providing cross-interaction with all the libraries available on
those platforms as well. H2O also provides stacking and boosting methods for combining multiple
learning algorithms in order to obtain better predictive performance. 

H2O: Except the REST API and bindings for popular programming languages, H2O is accessible
through CLI as well giving possibilities to set several options to control cluster deployment such as
how many nodes to launch, how much memory to allocate for each node, assign names to the
nodes in the cloud, and more. It offers a web-based interactive environment called Flow (similar to
Jupyter). Data source for the framework are natively local FS, Remote File, HDFS, S3, JDBC,
others  through generic  HDFS API.  Although the ML algorithm coverage is  not  high,  they are
optimised to run over Big Data and cover the need of the target companies i.e. banks and insurance
sectors.  In  details,  H2O is  used  by  8/10  top  banks  for  pattern-based  Anti-Money  Laundering
(AML), fraudulent behaviour detection, real-time personalised product recommendation; 7/10 top
insurance companies for risk group and claim classification automation, customer churn reduction,
customer retention analysis, insurance fraud alert system and usage-based insurance telematics; and
4/10  top  healthcare  companies  for  real-time  preventive  care,  cancer  detection  or  personalised
medicine development. 

Regarding the DL in H2O, it is based on FFNNs trained with stochastic gradient descent (SGD)
using  back-propagation.  The  global  model  is  periodically  built  from  local  models  via  model
averaging.  Local  models  are  build  on  each  node  with  multi-threading  using  global  model
parameters and local data. 

Sparkling Water contains the same features and functionality as H2O but provides a way to use
H2O with Spark. It is ideal for managing large clusters for data processing, especially when it
comes to transfer data from Spark to H2O (or vice versa). 

Deep Water (see Fig. 9) is H2O DL with native implementation of DL models for GPU-optimised
backends suc as TensorFlow, MXNet, and Caffe. These backends are accessible from Deep Water
through connectors. 
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Fig. 9 H2O Deep Water architecture [H2Odeepwater]

Strong points 

• Industrial use with significant growth and high popularity among financial, insurance and
healthcare companies. 

• optimization algorithms for Big Data processing and analytics with infrastructure supports. 

• H2O provides a wider generic set of ML algorithms that leverages Hadoop/Spark engines
for large-scale dataset processing. It aims to make ML/DM process more automatic through
GUI. 

Weak points 

• UI flow, the web-based user interface for H2O, do not support direct interaction with Spark.

• H2O  is  more  general  purpose  and  aims  at  different  scalable  DM  in  comparison  with
(specific) DL libraries e.g. TensorFlow or DL4j. 

3.3.4. Other frameworks and libraries coupled with MapReduce

FlinkML is  a  part  of  Apache  Flink,  which  is  an  open-source  framework  for
distributed stream and batch data processing [Flink]. FlinkML aims to provide a set of
scalable ML algorithms and an intuitive API adopted to Flink distributed framework;
it  contains  algorithms  for  supervised  learning,  unsupervised  learning,  data
preprocessing, recommendation and other utilities. Flink is focused on working with
lots of data with very low data latency and high fault tolerance on distributed systems;
its core feature is its ability to process data streams in real time. The main difference
between Spark and Flink lies in the way each framework deals with streams of data.
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Flink is a native streaming processing framework that can work on batch data. Spark
was originally designed to work with static data through its RDDs, it  uses micro-
batching to deal with streams.

Oryx 2 from Cloudera  also  has  a  ML layer.  Oryx  2  is  a  realization  of  Lambda
architecture built on Apache Spark and Apache Kafka for real-time large scale ML
[Oryx2]; it is designed for building applications and includes packaged, end-to-end
applications for collaborative filtering, classification, regression and clustering. Oryx
2 comprises the following three tiers 1) general Lambda architecture tier for batch,
speed  and  serving  layers,  which  are  not  specific  to  ML;  2)  ML abstraction  to
hyperparameter  selection;  3)  end-to-end implementation of  the  same standard  ML
algorithms as an application (ALS, random decision forests, k-means).

KNIME (Konstanz Information Miner) is the data analytic, reporting and integration
platform of the Knime AG, Switzerland [KNIME]. It integrates various components
for ML and DM through its modular data pipelining concept through GUI allowing
assembly  of  nodes  for  data  preprocessing  (ETL -  Extraction,  Transformation  and
Load),  for  modelling  and  data  analysis  and  visualisation  without,  or  with  only
minimal,  programming.  The platform is  released  under  open source GNU GPLv3
license and has more than 1500 modules, a comprehensive range of integrated tools,
and the widest choice of advanced algorithms available. KNIME is implemented in
Java but also allows for wrappers calling other code in addition to providing nodes
that allow to run Java, Python, Perl and other programming languages; and integration
with Weka, R, Python, Keras (DL), H2O (ML/DL), DL4J (DL, Hadoop/Spark). It has
considerable community supports i.e. it is used by over 3000 organizations in more
than 60 countries.

4. Conclusions
Machine Learning (ML), especially its subfield Deep Learning (DL), had many amazing advances
in the recent years, and may lead to technological breakthroughs that will be used by billions of
people. The software development in this field is fast changing with a great number of open-source
software from academic, industry, start-up, and open source communities. 

As a new computing model, DL with GPU support is changing how software is developed and how
it  runs.  Nowadays,  ML algorithms learn  from huge amount  of  real-world  examples  in  variety
formats. DL is about designing and training NNs. After a computationally consuming training, NNs
can be deployed in data centers to infer, predict and classify from new incoming data presented to
them. Trained NNs can also be deployed into intelligent IoT devices to understand the world. The
deployment  of  trained  NNs  require  smaller  computational  resources  in  comparison  with  the
development  phase.  The  new  computing  model  in  the  Big  Data  era  requires  massive  data
processing and massive parallelism supports that are capable to scale computation effectively and
efficiently according to the real need.
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ML and DM are research areas of computer science with fast involving development due to the
advances in data analysis research in the Big Data era. When the number of ML algorithms is
extensive  and  growing,  the  number  of  their  realizations  through  ML/NN/DL frameworks  and
libraries are extensive and growing too. The short outcome of the document is follows.  

• Most  of  the  DL/NN  framework  development  is  done  at  the  world’s  largest  software
companies such as Google, Facebook, and Microsoft. These companies dispose a huge data,
high performance infrastructure, human intelligence and investment resources. Their most
popular  DL tools  are  TensorFlow,  Microsoft  CNTK,  Caffe/Caffe2,  Torch/PyTorch,  and
MXNet. Apart from them, other DL tools such as Chainer, Theano, DL4J, and H2O from
other companies and research institutions, are also interesting, well-supported and suitable
for industrial use. 

• There are many high level wrapper libraries built on a top of above-mentioned DL tools
(e.g. Keras, TensorLayer, Gluon) suitable for convenient DL development.

• Big Data ecosystems such as Apache Spark/Flink and Cloudera Oryx 2 contain build-in ML
libraries  for  large-scale  data  mining  (mainly  for  tabular  data).  These  ML libraries  are
currently in involving state but the power of the whole ecosystem is significant.

• Every tool (including traditional general purpose ML tools) provides a way to process large-
scale data. 

• As of the year 2018, the Python is the most popular programming language for ML/DL
applications.  It  is  used  as  general  purpose  language  for  research,  development  and
production, at small and large scales. The majority of scientific data analytic and ML/DL
tools are either Python tools or support Python interfaces. 

• The trend shows also a high number of interactive data analytics and data visualisation tools
supporting decision makers. 

It is needed to notice that using these kind of tools is not the only way to build compute-intensive
applications or to do data analytics and data mining. Self made code packages can do the same job.
The price for this way is, of course, the time and the efforts spent on the code development and
code maintenance process.

There is a challenge of managing multiple tools, multiple approaches from divergent ML/DL user
communities in different applicable areas. The challenge is hard because of exposing a unified,
comprehensive, efficient and coherent platform, that is capable to scale computation dynamically
and  on-demands.  The  combined  impact  of  new  computing  resources  and  techniques  with  an
increasing avalanche of large datasets, is transforming many research areas. This evolution has
many different  faces,  components  and contexts,  and our  project  DEEP Hybrid DataCloud will
combine  some of  them to  propose  a  new e-infrastructure  framework  able  to  address  relevant
challenges in research.

DEEP-Hybrid-DataCloud – 777435 51



5. References
[Bajarin 2011] Bajarin,  B.:  Why  It’s  All  About  the  Digital  Ecosystem

https://techpinions.com/why-its-all-about-the-ecosystem/4567

[Bakker 2017] Bakker I.: Battle of the Deep Learning frameworks — Part I: 2017, even
more  frameworks  and  interfaces,  Dec  2017,
https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-
part-i-cff0e3841750 

[Bowlee 2017] Bowlee  J.:  Deep  learning  with  Python  (MachineLearningMastery.com),
2017

[Cano 2017] Cano, A., 2017. A survey on graphic processing unit computing for large‐
scale  data  mining.  Wiley  Interdisciplinary  Reviews:  Data  Mining  and
Knowledge Discovery.

[Chang 2011] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST),
2(3), 27.

[Chen 2015] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B.,
Zhang, C. and Zhang, Z., 2015. Mxnet: A flexible and efficient machine
learning  library  for  heterogeneous  distributed  systems.  arXiv  preprint
arXiv:1512.01274.

[Collobert 2002] Collobert,  R.,  Bengio,  S.  and  Mariéthoz,  J.,  2002.  Torch:  a  modular
machine learning software library (No. EPFL-REPORT-82802). Idiap.

[Collobert 2011] Collobert, R., Kavukcuoglu, K. and Farabet, C., 2011. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS Workshop (No.
EPFL-CONF-192376).

[Courbariaux 2016] Courbariaux,  M.,  Hubara,  I.,  Soudry,  D.,  El-Yaniv,  R.  and  Bengio,  Y.,
2016.  Binarized  neural  networks:  Training  deep  neural  networks  with
weights  and  activations  constrained  to+  1  or-1.  arXiv  preprint
arXiv:1602.02830.

[CRIPS-DM 1999] CRIPS-DM Cross-Industry  Standard  Process  for  Data  Mining EU FP4-
ESPRIT  4,  ID  24959,  1997-1999,
http://cordis.europa.eu/project/rcn/37679_en.html

[Cybenko 1989] Cybenko,  G.  (1989)  "Approximations  by  superpositions  of  sigmoidal
functions", Mathematics of Control, Signals, and Systems, 2 (4), 303-314

[DL4j 2018] Comparing  Top  Deep  learning  Frameworks:  Deeplearning4j,  PyTorch,
TensorFlow, Caffe, Keras, MxNet, Gluon & CNTK, accessed Feb 2018,
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch

[Deshpande 2017] Deshpande A.: Understanding CNNs Part 3 
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-
Learning-Papers-You-Need-To-Know-About.html

[Fan 2008] Fan,  Rong-En,  Kai-Wei  Chang,  Cho-Jui  Hsieh,  Xiang-Rui  Wang,  and
Chih-Jen  Lin.  "LIBLINEAR:  A library  for  large  linear  classification."
Journal of machine learning research 9, no. Aug (2008): 1871-1874.

DEEP-Hybrid-DataCloud – 777435 52



[Felice 2017] Mitch De Felice, Which Deep learning network is best for you, May 2017,
https://www.cio.com/article/3193689/artificial-intelligence/which-deep-
learning-network-is-best-for-you.html

[Goodfellow 2016] Goodfellow, I.,  Bengio, Y. and Courville, A., 2016. Deep learning. MIT
press.

[H2O.ai 2017] Deep  learning  (Neural  Networks),  12.2017,  http://h2o-
release.s3.amazonaws.com/h2o/rel-wheeler/2/docs-website/h2o-docs/data-
science/deep-learning.html

[Hafiane 2017] Hafiane,  A.,  Vieyres,  P.  and  Delbos,  A.,  2017.  Deep  learning  with
spatiotemporal consistency for nerve segmentation in ultrasound images.
arXiv preprint arXiv:1706.05870.

[Han 2015] Han, S., Mao, H. and Dally, W.J., 2015. Deep compression: Compressing
deep  neural  networks  with  pruning,  trained  quantization  and  huffman
coding. arXiv preprint arXiv:1510.00149.

[Han 2016] Han, S., Pool, J., Tran, J. and Dally, W., 2015. Learning both weights and
connections  for  efficient  neural  network.  In  Advances  in  Neural
Information Processing Systems (pp. 1135-1143).

[He 2016] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for
image recognition.  In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 770-778).

[He 2016b] He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings
in deep residual networks. In European Conference on Computer Vision
(pp. 630-645). Springer, Cham

[Huang 2017] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017, July).
Densely connected convolutional  networks.  In Proceedings  of  the IEEE
conference on computer vision and pattern recognition (Vol. 1, No. 2, p. 3).

[Iandola 2016] Iandola,  F.N.,  Han,  S.,  Moskewicz,  M.W.,  Ashraf,  K.,  Dally,  W.J.  and
Keutzer,  K.,  2016.  SqueezeNet:  AlexNet-level  accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

[Ioffe 2015] Ioffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
Conference on Machine Learning (pp. 448-456).

[Jolav 2018] Jolav, Github Star History - https://codetabs.com/github-stars/github-star-
history.html

[Jovic 2014] Jovic, A., Brkic, K. and Bogunovic, N., 2014, May. An overview of free
software tools for general data mining. In Information and Communication
Technology,  Electronics  and  Microelectronics  (MIPRO),  2014  37th
International Convention on (pp. 1112-1117). IEEE.

[Kalogeiton 2017] Kalogeiton,  V.,  Lathuilière,S.,  Luc,  P.,  Lucas,  T.,  Shmelkov,  K.,  Deep
learning  frameworks:  TensorFlow,  Theano,  Keras,  Torch  and  Caffe,
January 2017,
 https://project.inria.fr/deeplearning/files/2016/05/DLFrameworks.pdf

[Kalray 2017] Kalray:  Deep  learning  for  high-performance  applications
http://www.eenewseurope.com/Learning-center/kalray-deep-learning-high-

DEEP-Hybrid-DataCloud – 777435 53



performance-applications, March, 2017

[Konsor 2012] Konsor P.: Intel software | Developer zone | Performance Benefits of Half
Precision  Floats,  Intel  Software  Development  Zone,  August,  2012
https://software.intel.com/en-us/articles/performance-benefits-of-half-
precision-floats

[Krizhevsky 2012] Krizhevsky,  A.,  Sutskever,  I.  and  Hinton,  G.E.,  2012.  ImageNet
classification  with  deep  convolutional  neural  networks.  In  Advances  in
neural information processing systems (pp. 1097-1105).

[Lazebnik 2017] Lazebnik, L.: Convolutional Neural Network Architectures: from LeNet to
ResNet,  2017,  http://web.engr.illinois.edu/~slazebni/spring17/
lec01_cnn_architectures.pdf

[Lacey 2016] Lacey G., Taylor G. W., & Areibi, S. (2016). Deep learning on FPGAs:
Past, Present, and Future. arXiv preprint arXiv:1602.04283.

[LeCun 1998] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P.,  1998. Gradient-based
learning  applied  to  document  recognition.  Proceedings  of  the  IEEE,
86(11), pp.2278-2324.

[Lisa 2015] Deep Learning  Tutorial,  Release  0.1,  D.L.,  September  2015.  LISA lab.
University of Montreal.

[Liu 2016] Liu, J., Li, J., Li, W. and Wu, J., 2016. Rethinking Big data: A review on
the data quality and usage issues. ISPRS Journal of Photogrammetry and
Remote Sensing, 115, pp.134-142.

[Mierswa 2003] Mierswa, I., Klinkenberg, R., Fischer, S. and Ritthoff, O., August 2003. A
flexible platform for knowledge discovery experiments: Yale–yet another
learning environment. In Proc. of LLWA (Vol. 2003, p. 2).

[Mierswa 2017] Mierswa, I: What is Artificial Intelligence, Machine Learning, and Deep
Learning,  2017,  https://rapidminer.com/artificial-intelligence-machine-
learning-deep-learning/

[MILA 2017] MILA  and  the  future  of  Theano,  accessed  Feb  2018,
https://groups.google.com/forum/#!msg/theano-
users/7Poq8BZutbY/rNCIfvAEAwAJ

[Mitchell 2017] Mitchell R., Gradient Boosting, Decision Trees and XGBoost with CUDA,
September  2017,  https://devblogs.nvidia.com/parallelforall/  gradient-
boosting-decision-trees-xgboost-cuda/

[Nasyrov 2017] Nasyrov D.,  June  2017,  Deep  Neural  Networks.  Theory.  Convolutional
Networks.  https://medium.com/pharos-production/deep-neural-networks-
theory-convolutional-networks-332c28ab82ad

[Patel, 2017] Mo Patel: "When two trends fuse: PyTorch and recommender systems".
O'Reilly Media, accessed Feb 2018, https://www.oreilly.com/ideas/when-
two-trends-fuse-pytorch-and-recommender-systems

[Piatetsky 2017] Piatetsky, G., Python vs R - https://www.kdnuggets.com/2017/09/python-
vs-r-data-science-machine-learning.html

[Russakovsky 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M. and Berg, A.C., 2015. Imagenet
large scale visual recognition challenge. International Journal of Computer

DEEP-Hybrid-DataCloud – 777435 54



Vision, 115(3), pp.211-252.

[Salakhutdinov 2009] Salakhutdinov, R. and Hinton, G., 2009, April. Deep boltzmann machines.
In Artificial Intelligence and Statistics (pp. 448-455).

[Simonyan 2015] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Schaul 2010] Schaul,  T.,  Bayer,  J.,  Wierstra,  D.,  Sun,  Y.,  Felder,  M.,  Sehnke,  F.,
Rückstieß,  T.  and  Schmidhuber,  J.,  2010.  PyBrain.  Journal  of  Machine
Learning Research, 11(Feb), pp.743-746.

[Schmidhuber 2015] Schmidhuber,  J.,  2015. Deep learning in neural networks: An overview.
Neural networks, 61, pp.85-117.

[Skymind 2017] Comparing  Top  Deep  Learning  Frameworks:  Deeplearning4j,  PyTorch,
TensorFlow,  Caffe,  Keras,  MxNet,  Gluon and CNTK,  November  2017,
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch

[Sonnenburg 2010] Sonnenburg, S.Ć., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F.D.,
Binder,  A.,  Gehl,  C.  and  Franc,  V.:  "The  SHOGUN  machine  learning
toolbox." Journal of Machine Learning Research 11, no. Jun (2010): 1799-
1802.

[Srivastava 2014] Srivastava,  N.,  Hinton,  G.E.,  Krizhevsky,  A.,  Sutskever,  I.  and
Salakhutdinov, R., 2014. Dropout: a simple way to prevent neural networks
from overfitting.  Journal  of  machine  learning  research,  15(1),  pp.1929-
1958.

[Sze 2017] Sze, V., Chen, Y.H., Yang, T.J. and Emer, J., 2017. Efficient processing of
deep  neural  networks:  A  tutorial  and  survey.  arXiv  preprint
arXiv:1703.09039.

[Szegedy 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D.,  Vanhoucke,  V.  and  Rabinovich,  A.,  2015.  Going  deeper  with
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 1-9).

[Tokui 2015] Tokui, S., Oono, K., Hido, S. and Clayton, J., 2015, December. Chainer: a
next-generation open source framework for deep learning. In Proceedings
of  workshop  on  machine  learning  systems  (LearningSys)  in  the  29th
annual conference on neural information processing systems (NIPS) (Vol.
5).

[TPU2 2017] First In-Depth Look at Google's New Second-Generation TPU, May 2017,
https://www.nextplatform.com/2017/05/17/first-depth-look-  googles-new-
second-generation-tpu/

[Upfront 2015] The  Upfront  Analytics  Team,  May  2015,  Data  Mining  Vs  Artificial
Intelligence  Vs  Machine  Learning,  http://upfrontanalytics.com/data-
mining-vs-artificial-intelligence-vs-machine-learning/

[Varangaonkar 2017] Varangaonkar  A.:  Top  10  Deep  Learning  Frameworks,  May  2017.
https://datahub.packtpub.com/deep-learning/top-10-deep-learning-
frameworks

[Veen 2016] Veen  F.  V.:  The  neural  network  Zoo,  Sep  2016,
http://www.asimovinstitute.org/neural-network-zoo/

DEEP-Hybrid-DataCloud – 777435 55



[Zagoruyko 2016] Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv
preprint arXiv:1605.07146.

[Zeiler 2014] Zeiler,  M.D.  and  Fergus,  R.,  2014,  September.  Visualizing  and
understanding  convolutional  networks.  In  European  conference  on
computer vision (pp. 818-833). Springer, Cham.

[Zygmunt 2014] Zygmunt Z., Vowpal Wabbit, Liblinear/SBM and StreamSVM compared,
2014,  http://fastml.com/vowpal-wabbit-liblinear-sbm-and-streamsvm-
compared/

 

5.1. Links
[autograd] autograd - Automatic differentiation | Efficiently computes derivatives of 

NumPy code, accessed Feb 2018, https://github.com/HIPS/autograd

[AnaCloudera] Anaconda for Cloudera - Data Science with Python Made Easy for Big data, 
accessed Feb 2018, http://know.continuum.io/anaconda-for-cloudera.html

[Anaconda] Anaconda | The Most Popular Python Data Science Platform, accessed Feb 
2018, https://www.anaconda.com/what-is-anaconda/

[Caffe] Caffe | Deep learning framework by Berkeley Artificial Intelligence Research
(BAIR), accessed Feb 2018, http://caffe.berkeleyvision.org/

[Caffe2] Caffe2 | A New Lightweight, Modular, and Scalable Deep Learning 
Framework, accessed Feb 2018, https://caffe2.ai/

[Caffe2PyTorch] Caffe2 vs. PyTorch, Apr. 2017, https://discuss.pytorch.org/t/caffe2-vs-
pytorch/2022/5

[Chainer] Chainer | A Powerful, Flexible, and Intuitive Framework for Neural 
Networks, accessed Feb 2018, https://chainer.org/index.html

[Clj-ml] Clj-ml | A machine learning library for Clojure built on top of Weka and 
friends, accessed Feb 2018, https://github.com/antoniogarrote/clj-ml

[Clojure] The Clojure Programming Language, accessed Feb 2018, https://clojure.org/

[CNTK] Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit, 
accessed Feb 2018, https://docs.microsoft.com/en-us/cognitive-toolkit/

[Cuda] CUDA Zone | NVIDIA Development, accessed Feb 2018, 
https://developer.nvidia.com/cuda-zone

[cuBLAS] Linear Algebra, accessed Feb 2018, https://developer.nvidia.com/cublas

[cuDNN] NVIDIA cuDNN | GPU Accelerated Deep Learning, accessed Feb 2018, 
https://developer.nvidia.com/cudnn

DEEP-Hybrid-DataCloud – 777435 56



[CudaToolkit] NVIDIA CUDA Toolkit, accessed Feb 2018, 
https://developer.nvidia.com/cuda-toolkit

[cuSPARSE] Sparse Matrix Operations, accessed Feb 2018, 
https://developer.nvidia.com/cusparse

[DeepStreamSDK] Deep Learning for Video Analytics, accessed Feb 2018, 
https://developer.nvidia.com/deepstream-sdk

[DIGITS] The NVIDIA Deep Learning GPU Training System, accessed Feb 2018, 
https://developer.nvidia.com/digits

[DL4J] Deeplearning4j | The first commercial-grade, open-source, distributed deep-
learning library written for Java and Scala, integrated with Hadoop and 
Spark, accessed Feb 2018, https://deeplearning4j.org/

[DLwiki] Comparison of deep learning software, accessed Feb 2018, 
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

[DMLC] DMLC for Scalable and Reliable Machine Learning, accessed Feb 2018, 
http://dmlc.ml/

[Flink] Apache Flink: Scalable Stream and Batch Data Processing, accessed Feb 
2018, https://flink.apache.org/

[Gate] GATE General Architecture for Text Engineering, accessed Feb 2018, 
https://gate.ac.uk/

[Grafana] Grafana - The open platform for analytics and monitoring, accessed Feb 
2018, https://grafana.com/

[Gluon] A clear, concise, simple yet powerful and efficient API for deep learning, 
accessed Feb 2018, https://github.com/gluon-api/gluon-api

[Jupyter] Project Jupyter, accessed Feb 2018, https://jupyter.org/

[Keras] Keras | High-level neural networks API, accessed Feb 2018, https://keras.io/

[Kibana] Kibana: Explore, Visualize, Discover Data | Elastic, accessed Feb 2018, 
https://www.elastic.co/products/kibana

[KNIME] KNIME - Open for Innovation, accessed Feb 2018, https://www.knime.com/

[H2O] 0xdata - H2O.ai | Fast Scalable Machine Learning, accessed Feb 2018, 
http://h2o.ai/

[H2Odeepwater] Deep Water, accessed Feb 2018, 

DEEP-Hybrid-DataCloud – 777435 57

https://jupyter.org/


https://github.com/h2oai/deepwater/blob/master/README.md

[Lasagne] Lightweight library to build and train neural networks in Theano, accessed 
Feb 2018, https://github.com/Lasagne/Lasagne

[LibLinear] LIBLINEAR - A Library for Large Linear Classification, accessed Feb 2018,
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

[LibSVM] LIBSVM - A Library for Support Vector Machines, accessed Feb 2018, 
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[NCCL] Multi-GPU Communication, accessed Feb 2018, 
https://developer.nvidia.com/nccl

[NLTK] Natural Language Toolkit, accessed Feb 2018, http://www.nltk.org/

[NumPy] NumPy | The fundamental package for scientific computing with Python, 
accessed Feb 2018, http://www.numpy.org/

[NVidiaAC] NVIDIA Accelerated Computing, accessed Feb 2018, 
https://developer.nvidia.com/computeworks

[NVidiaDLS] NVIDIA Deep Learning SDK, accessed Feb 2018, 
https://developer.nvidia.com/deep-learning-software

[MatConvNet] MatConvNet | CNNs for MATLAB, accessed Feb 2018, 
http://www.vlfeat.org/matconvnet/

[MatLab] MatLab | The Language of Technical Computing, accessed Feb 2018, 
http://www.mathworks.com/products/matlab/

[MILA] Montreal Institute for Learning Algorithms, accessed Feb 2018, 
http://mila.umontreal.ca/

[MLK] Intel MKL | Intel Math Kernel Library, accessed Feb 2018, 
https://software.intel.com/en-us/intel-mkl/

[MXNet] Apache MXNet - A flexible and efficient library for deep learning, accessed 
Feb 2018,  https://mxnet.apache.org/

[Octave] GNU Octave Scientific Programming Language, accessed Feb 2018, 
https://www.gnu.org/software/octave/

[ONNX] Open Neural Network Exchange format, accessed Feb 2018, https://onnx.ai/

[Orange] Orange | Open source machine learning and data visualization for novice and
expert. Interactive data analysis workflows with a large toolbox, , accessed 

DEEP-Hybrid-DataCloud – 777435 58



Feb 2018, https://orange.biolab.si/

[OpenCL] OpenCL | Open Computing Language - The Khronos Group Inc., 2018, 
https://www.khronos.org/opencl/; https://developer.nvidia.com/opencl

[OpenMP] OpenMP | API specification for parallel programming, accessed Feb 2018,  
www.openmp.org

[Open MPI] Open MPI | Open Source High Performance Computing, accessed Feb 2018, 
https://www.open-mpi.org/

[Oryx2] Oryx2 | Framework for real-time large scale machine learning, accessed Feb 
2018, http://oryx.io/

[PaddlePaddle] PaddlePaddle | PArallel Distributed Deep LEarning, accessed Feb 2018, 
http://www.paddlepaddle.org/

[Pandas] Pandas | Python Data Analysis Library, accessed Feb 2018, 
https://pandas.pydata.org/

[PrettyTensor] Pretty Tensor | Fluent Networks in TensorFlow, accessed Feb 2018, 
https://github.com/google/prettytensor

[PyBrain] PyBrain official web page, accessed Feb 2018, http://www.pybrain.org

[Python] Python Programming Language, accessed Feb 2018, https://www.python.org/

[PyTorch] PyTorch | Deep learning framework that puts Python first, accessed Feb 
2018, http://pytorch.org/

[Radoop] Advanced Radoop Processes - RapidMiner Documentation, accessed Feb 
2018,  https://docs.rapidminer.com/radoop/overview/radoop-advanced.html

[Rapid] RapidMiner Open Source Predictive Analytics Platform, accessed Feb 2018, 
https://rapidminer.com/

[R-CRAN] Comprehensive R Archive Network (CRAN), accessed Feb 2018, 
https://cran.r-project.org/

[Rproject] R Project for Statistical Computing, accessed Feb 2018, http://www.r-
project.org/

[PSPP] GNU PSPP for statistical analysis of sampled data, accessed Feb 2018, 
https://www.gnu.org/software/pspp/

[SAS] SAS (previously Statistical Analysis System), accessed Feb 2018, 
https://www.sas.com/en_us/

DEEP-Hybrid-DataCloud – 777435 59



[Scikit] Scikit-Learn Machine Learning in Python, accessed Feb 2018, http://scikit-
learn.org/stable/

[SciLab] SciLab - Open source software for numerical computation, accessed Feb 
2018, https://www.scilab.org/

[SciPy] SciPy | Python-based ecosystem of open-source software for mathematics, 
science, and engineering, accessed Feb 2018, https://www.scipy.org/

[Shogun] Shogun official web page, accessed Feb 2018, http://www.shogun.ml/

[ShogunGoogle] Shogun Machine Learning Toolbox - Google Summer of Code Archive, 
accessed Feb 2018, https://summerofcode.withgoogle.com/archive/2017/ 
organizations/4704476053110784/

[Sonet] DeepMind | Sonnet TensorFlow-based neural network library, accessed Feb 
2018, https://github.com/deepmind/sonnet

[SPSS] SPSS, accessed Feb 2018, http://www.ibm.com/software/analytics/spss/

[Tableau] Tableau Software: Business Intelligence and Analytics, accessed Feb 2018, 
https://www.tableau.com/

[TensorFlow] TensorFlow | An open-source software library for Machine Intelligence, 
accessed Feb 2018, https://www.tensorflow.org/

[TensorFlowLite] TensorFlow Lite, accessed Feb 2018, https://www.tensorflow.org/mobile/

[TensorLayer] TensorLayer | Deep Learning (DL) and Reinforcement Learning (RL) library
extended from Google TensorFlow, accessed Feb 2018, 
https://tensorlayer.readthedocs.io/en/latest/#

[TF-Slim] TF-Slim | TensorFlow-Slim | Lightweight library for defining, training and 
evaluating complex models in TensorFlow, accessed Feb 2018, 
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim

[TFLean] TFLearn | TensorFlow Deep Learning Library, accessed Feb 2018, 
http://tflearn.org/

[TensorRT] Deep Learning Inference Engine, accessed Feb 2018, 
https://developer.nvidia.com/tensorrt

[Theano]  Theano http://deeplearning.net/software/theano/

[Torch] Torch | scientific computing framework for LUAJIT http://torch.ch/

[Weka] Weka3: Data Mining Software in Java, accessed Feb 2018, 

DEEP-Hybrid-DataCloud – 777435 60



http://www.cs.waikato.ac.nz/ml/weka/

[VW] Vowpal Wabbit open source fast learning system, accessed Feb 2018, 
https://github.com/JohnLangford/vowpal_wabbit/wiki

[VWAzure] Text Analytics and Vowpal Wabbit in Azure Machine Learning Studio, 
accessed Feb 2018, https://azure.microsoft.com/en-
in/documentation/videos/text-analytics-and-vowpal-wabbit-in-azure-ml-
studio/

[Zeppelin] Apache Zeppelin, accessed Feb 2018, https://zeppelin.apache.org/

DEEP-Hybrid-DataCloud – 777435 61



6. Glossary

6.1. List of Figures
Fig. 1 CRISP-DM Cross-Industry Standard Process for Data Mining

Fig. 2 Relations between Artificial Intelligence, Machine Learning, Neural Networks and Deep
Learning

Fig. 3 Overview of Machine Learning algorithms

Fig. 4 The LeNet-5 model

Fig. 5 Overview of Machine Learning frameworks and libraries

Fig. 6 Machine  Learning  and  Deep  Learning  frameworks  and  libraries  layering  based  on
abstraction implementation levels

Fig. 7 State of open source DL frameworks at the end of 2017

Fig. 8 ONNX open ecosystem for interchangeable AI models

Fig. 9 H2O Deep Water architecture

6.2. List of Tables
Table 1 Deep Learning timeline through the most well-known models

Table 2 Accelerated libraries from the biggest worldwide manufactures

Table 3 Digital ecosystems

Table 4 Machine Learning and Neural Networks frameworks and libraries without special 
supports

Table 5 Deep Learning frameworks and libraries with GPU support

Table 6 Machine Learning and Deep Learning frameworks and libraries integrated with 
MapReduce

DEEP-Hybrid-DataCloud – 777435 62



6.3. Acronyms
AI Artificial Intelligence
ALS Alternating Least Squares
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AWS Amazon Web Services
CART Classification And Regression Tree
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RDD Resilient Distributed Dataset
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RNN Recurrent Neural Networks
SCG Static Computational Graph
SGD Stochastic Gradient Descent
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SVM Support Vector Machines
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TPU (Google) Tensor Processing Unit
VM Virtual Machine
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